Skip to main content
Log in

Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.M. Ingo, S. Kaciulis, A. Mezzi, T. Valente, F. Casadei, and G. Gusmano, Characterization of Composite Titanium Nitride Coatings Prepared by Reactive Plasma Spraying, Electrochim. Acta, 2005, 50, p 4531-4537

    CAS  Google Scholar 

  2. W. Feng, D. Yan, J. He, X. Li, and Y. Dong, Reactive Plasma Sprayed TiN Coating and its Tribological Properties, Wear, 2005, 258, p 806-811

    CAS  Google Scholar 

  3. D.T. Gawne, Y. Bao, and T. Zhang, Plasma-Spray Deposition of Silicon Nitride-Based Coatings, Proc. of the International Thermal Spray Conf., 2001, CD.

  4. S. Thiele, R.B. Heimann, L.-M. Berger, M. Herrmann, M. Nebelung, T. Schnick, B. Wielage, and P. Vuoristo, Microstructure and Properties of Thermally Sprayed Silicon Nitride-Based Coatings, J. Therm. Spray Technol., 2002, 11(2), p 218-225

    CAS  Google Scholar 

  5. M. Yamada, T. Inamoto, M. Fukumoto, and T. Yasui, Fabrication of Silicon Nitride Thick Coatings by Reactive RF Plasma Spraying, Mater. Trans., 2004, 45, p 3304-3308

    CAS  Google Scholar 

  6. F. Kassabji, F. Tourenne, A. Derradji, and P. Fauchais, Aluminium and Aluminium Nitride Deposition by Low Pressure Nitrogen Arc Plasma Spraying, Proc. 10th Int. Therm. Spray Conf., 1983, 80, p 82-84

    Google Scholar 

  7. M. Fukumoto, M. Yamada, T. Yasui, and K. Takahashi, Fabrication of Aluminum Nitride Coating by Reactive RF Plasma Spray Process, Proc. of the International Thermal Spray Conf. (ITSC), 2004, CD.

  8. M. Yamada, T. Yasui, M. Fukumoto, and K. Takahashi, Nitridation of Aluminum Particles and Formation Process of Aluminum Nitride Coatings by Reactive RF Plasma Spraying, Thin Solid Films, 2007, 515(9), p 4166-4171

    CAS  Google Scholar 

  9. M. Yamada, M. Shahien, T. Yasui, and M. Fukumoto, Fabrication of Aluminum Nitride Coating by Atmospheric Plasma Spray, Proc. of the 19th International Symposium on Plasma Chemistry (ISPC19), Bochum, Germany, July 26-31, 2009, USB (P2.11.35).

  10. M. Shahien, M. Yamada, T. Yasui, and M. Fukumoto, Cubic Aluminum Nitride Coating Through Atmospheric Reactive Plasma Nitriding, J. Therm. Spray Technol., 2010, 19(3), p 635-641

    CAS  Google Scholar 

  11. M. Yamada, Y. Kouzaki, T. Yasui, and M. Fukumoto, Fabrication of Iron Nitride Coatings by Reactive RF Plasma Spraying, Surf. Coat. Technol, 2006, 201, p 1745-1751

    CAS  Google Scholar 

  12. A.W. Wemer, Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman & Hall, London, 1997, p 6-68

    Google Scholar 

  13. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publications, Park Ridge, NJ, 1996, p 237-239

    Google Scholar 

  14. A.W. Weimer, G.A. Cochran, G.A. Eisman, J.P. Henley, B.D. Hook, L.K. Mills, T.A. Guiton, A.K. Knudsen, N.R. Nicholas, J.E. Volmering, and W.G. Moore, Rapid Process for Manufacturing Aluminum Nitride Powder, J. Am. Ceram. Soc., 1994, 77(3), p 3-18

    CAS  Google Scholar 

  15. S. Nakamura, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes, Science, 1998, 281, p 956-961

    CAS  Google Scholar 

  16. L.R. Krishna, D. Sen, Y.S. Rao, G.V.N. Rao, and G. Sundararajan, Thermal Spray Coating of Aluminum Nitride Utilizing the Detonation Spray Technique, J. Mater. Res., 2002, 17(10), p 2514-2523

    CAS  Google Scholar 

  17. B. Kolman, J. Forman, J. Dubsky, and P. Chraska, Homogeneity Studies of Powders and Plasma Sprayed Deposits, Mikrochim. Acta, 1994, 114-115, p 335-342

    CAS  Google Scholar 

  18. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    CAS  Google Scholar 

  19. A.J. Allen, G.G. Long, H. Boukari, J. Ilavsky, A. Kulkarni, S. Sampath, H. Herman, and A.N. Goland, Microstructure Characterization Studies to Relate the Properties of Thermal-Spray Coatings to Feedstock and Spray Conditions, Surf. Coat. Technol., 2001, 146-147, p 544-552

    CAS  Google Scholar 

  20. P. Fauchais, G. Montavan, and G. Bertrand, Influence of Powders on Thermal Spray Coating Structures: Recent Developments in Nano or Finely Structured Coatings and Some Safety Issues, Proc. of the International Thermal Spray Conf. (ITSC), 2009, p 799-817.

  21. P. Fauchais, G. Montavan, and G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 56-80

    CAS  Google Scholar 

  22. M. Wang and L.L. Shaw, Effect of the Powder Manufacturing Method on Microstructure and Wear Performance of Plasma Sprayed Alumina-Titania Coatings, Surf. Coat. Technol., 2007, 202, p 34-44

    CAS  Google Scholar 

  23. M. Vardelle, A. Vardelle, P. Fauchais, K.-I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284

    CAS  Google Scholar 

  24. F.B. Ettouil, O. Mazhorova, B. Pateyron, H. Ageorges, M. El Ganaoui, and P. Fauchais, Predicting Dynamic and Thermal Histories of Agglomerated Particles Injected within a d. C. Plasma Jet, Surf. Coat. Technol., 2008, 202, p 4491-4495

    Google Scholar 

  25. C. Lin and S. Chung, Combustion synthesis of aluminum nitride powder using additives, J. Mater. Res., 2001, 16(8), p 2200-2208

    CAS  Google Scholar 

  26. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272, p 181-188

    Google Scholar 

  27. S. Sampath and X. Jiang, Splat Formation and Microstructure Development During Plasma Spraying: Deposition Temperature Effects, Mater. Sci. Eng. A, 2001, 304-306, p 144-150

    Google Scholar 

  28. H.R. Salimijazi, L. Pershin, T.W. Coyle, J. Mostaghimi, S. Chandra, Y.C. Lau, L. Rosenzweig, and E. Moran, Effect of Droplet Characteristics and Substrate Surface Topography on the Final Morphology of Plasma-Sprayed Zirconia Single Splats, J. Therm. Spray Technol., 2007, 16(2), p 291-299

    CAS  Google Scholar 

  29. H. Zhang, X.Y. Wang, L.L. Zheng, and S. Sampath, Numerical Simulation of Nucleation, Solidification, and Microstructure Formation in Thermal Spraying, Int. J. Heat Mass Transf., 2004, 47, p 2191-2203

    CAS  Google Scholar 

  30. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia Part I. First Splat Solidification, Thin Solid Films, 2001, 397, p 30-39

    CAS  Google Scholar 

  31. P. Duwez, R.H. Willen, and W. Klement, Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys, J. Appl. Phys., 1960, 31, p 1136-1137

    CAS  Google Scholar 

  32. D.J. Tilly, J.P.A. Lofvander, and C.G. Levi, Solidification Paths and Carbide Morphologies in Melt Processed MoSi2-SiC In Situ Composites, Metall. Mater. Trans., 1996, 28A, p 1889-1900

    Google Scholar 

  33. M.J. Kramer, H. Mecco, K.W. Dennis, E. Vargonova, R.W. McCallum, and R.E. Napolitano, Rapid Solidification and Metallic Glass Formation—Experimental and Theoretical Limits, J. Non-Cryst. Solids, 2007, 353, p 3633-3639

    CAS  Google Scholar 

  34. J. Kong, Z. Ye, and F. Lv, Non-Equilibrium Solidification Character of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 Bulk Metallic Glass Composites Containing Ductile Dendrite Phase, J. Alloys Compd., 2009, 478, p 202-205

    CAS  Google Scholar 

  35. R.A. Rodriguez-Diaz, L. Banos, O. Novelo, C. Flores, J. Colin, J. Arenas-Alatorre, and J.A. Juarez-Islas, Microstructural Characterization of Fe40Al15Cr (% at.) Intermetallic Alloy Produced by Rapid Solidification, Acta Microsc., 2009, 18(2), p 169-173

    CAS  Google Scholar 

  36. I. Kimura, K. Ichiya, M. Ishii, N. Hotta, and T. Kitamura, Synthesis of Fine AlN Powder by a Floating Nitridation Technique Using an N2/NH3 Gas Mixture, J. Mater. Sci. Lett., 1989, 8, p 303-304

    CAS  Google Scholar 

  37. T. Fujii, K. Yoshida, K. Suzuki, and S. Ito, Direct Nitriding of Large Grains of Aluminum with 2 mm Size, Solid State Ionics, 2001, 141-142, p 593-598

    CAS  Google Scholar 

  38. M. Radwan and Y. Miyamoto, Growth of Quasi-Aligned AlN Nanofibers by Nitriding Combustion Synthesis, J. Am. Ceram. Soc., 2007, 90(8), p 2347-2351

    CAS  Google Scholar 

  39. M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameter and Particle Behavior Relationships During Plasma Spraying, J. Therm. Spray Technol., 1993, 2(1), p 79-91

    CAS  Google Scholar 

  40. K. Remesh, H.W. Ng, and S.C.M. Yu, Influence of Process Parameters on the Deposition Footprint in Plasma-Spray Coating, J. Therm. Spray Technol., 2003, 12(3), p 377-392

    Google Scholar 

  41. Z. Salhi, S. Guessasma, and N. Fenineche, Yttria-Stabilized Zirconia In-flight Particle characteristics Under Vacuum Plasma Spray Conditions, Vacuum, 2009, 83, p 1382-1387

    CAS  Google Scholar 

  42. M. Varadelle, C. Trassy, A. Vardelle, and P. Fauchais, Experimental Investigation of Powder Vaporization in Thermal Plasma Jets, Plasma Chem. Plasma Process, 1991, 11(2), p 185-201

    Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT KAKENHI (21760583). M. Shahien would like to thank NGK foundation in Aichi, Japan for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Shahien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahien, M., Yamada, M., Yasui, T. et al. Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size. J Therm Spray Tech 20, 580–589 (2011). https://doi.org/10.1007/s11666-010-9582-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9582-0

Keywords

Navigation