Skip to main content
Log in

Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Millimeter-sized molten Cu droplets were deposited on AISI304 substrate surface by free falling experiment. The roles of substrate temperature and ambient pressure on heat transfer at interface between molten droplet and substrate surface were systematically investigated. The splat characteristics were evaluated in detail. Temperature history of molten droplet was measured at splat-substrate interface. Cooling rate of the flattening droplet was calculated as well. Furthermore, the spreading behavior of molten droplet on substrate surface was captured by high speed camera. The heat transfer from splat to substrate was enhanced both by substrate heating and by ambient pressure reduction, which can be attributed to the good contact at splat bottom surface. The splats in free falling experiment showed similar changing tendency as thermal-sprayed particles. Consequently, substrate temperature and ambient pressure have an equivalent effect to contact condition at interface between droplet and substrate surface. Substrate heating and pressure reduction may enhance the wetting during splat flattening, and then affect the flattening and solidification behavior of the molten droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.L. Thorpe, Thermal Spray Industry in Transition, Adv. Mater. Process, 1993, 143(5), p 50-61

    CAS  Google Scholar 

  2. F. Kassabji, G. Jacq, and J.P. Durand, Thermal Spray Applications for the Next Millenium: A Business Development Perspective, Proceedings of the International Thermal Spraying Conference 1998, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, Materials Park, OH, 1998, p 1677-1680

  3. M. Ducos and J.P. Durand, Thermal Coatings in Europe, Business Prospection, Proceedings of the International Thermal Spraying Conference 2001, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 25-29, 2001 (Singapore), ASM International, Materials Park, OH, 2001, p 1267-1271

  4. M. Fukumoto, H. Hayashi, and T. Yokoyama, Relationship Between Particle’s Splat Pattern and Coating Adhesive Strength of HVOF Sprayed Cu-Alloy, J. Jpn. Therm. Spray Soc., 1995, 32(3), p 149-156 (in Japanese)

    CAS  Google Scholar 

  5. M. Fukumoto, S. Katoh, and I. Okane, Splat Behavior of Plasma Sprayed Particles on Flat Substrate Surface, Proceedings of the International Thermal Spray Conference 1995, A. Ohmori, Ed., May 22-26, 1995 (Kobe, Japan), ASM International, Materials Park, OH, 1995, p 353-358

  6. M. Fukumoto, K. Yang, T. Yasui, and M. Yamada, Control of Thermal Spray Process through Observation on Individual Splat Behavior, J. Solid Mech. Mater. Eng., 2010, 4(2), p 107-118

    Article  Google Scholar 

  7. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58

    Article  CAS  Google Scholar 

  8. K. Yang, K. Tomita, M. Fukumoto, M. Yamada, and T. Yasui, Effect of Ambient Pressure on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2009, 18(4), p 510-518

    Article  CAS  Google Scholar 

  9. M. Fukumoto, Y. Tanaka, and E. Nishioka, Flattening Problem of Thermal Sprayed Particles, Mater. Sci. Forum, 2004, 449-452, p 1309-1312

    Article  CAS  Google Scholar 

  10. M. Fukumoto, M. Shiiba, H. Kaji, and T. Yasui, Three-Dimensional Transition Map of Flattening Behavior in the Thermal Spray Process, Pure Appl. Chem., 2005, 77(2), p 429-442

    Article  CAS  Google Scholar 

  11. M. Fukumoto, T. Yamaguchi, M. Yamada, and T. Yasui, Splash Splat to Disk Splat Transition Behavior in Plasma-Sprayed Metallic Materials, J. Therm. Spray Technol., 2007, 16(5-6), p 905-912

    Article  CAS  Google Scholar 

  12. J. Madjeski, Solidification of Droplets on a Cold Surface, Int. J. Heat Mass Transf., 1976, 19, p 1009-1013

    Article  Google Scholar 

  13. H. Fukanuma, A Porosity Formation Flattening Model of an Impinging Molten Particle in Thermal Spray Coatings, J. Therm. Spray Technol., 1994, 3(1), p 33-44

    Article  Google Scholar 

  14. R. Dhiman, A. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat Technol., 2007, 201, p 7789-7801

    Article  CAS  Google Scholar 

  15. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    Article  CAS  Google Scholar 

  16. A.T.T. Tran, S. Brossard, M.M. Hyland, B.J. James, and P. Munroe, Evidence of Substrate Melting of NiCr Particles on Stainless Steel Substrate by Experimental Observation and Simulations, Plasma. Chem. Plasma Process., 2009, 29, p 475-495

    Article  CAS  Google Scholar 

  17. C. Moreau, P. Gougeon, and M. Lamontagne, Influence of Substrate Preparation on the Flattening and Cooling of Plasma-Sprayed Particles, J. Therm. Spray Technol., 1995, 4(1), p 25-33

    Article  CAS  Google Scholar 

  18. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Therm. Spray Technol., 2003, 12(3), p 370-376

    Article  CAS  Google Scholar 

  19. A. McDonald, C. Moreau, and S. Chandra, Effect of Substrate Oxidation on Spreading of Plasma-Sprayed Nickel on Stainless Steel, Surf. Coat Technol., 2007, 202, p 23-33

    Article  CAS  Google Scholar 

  20. K. Yang, T. Usami, Y. Ebisuno, K. Tanaka, M. Fukumoto, T. Yasui, and M. Yamada, Study of Wetting on Flattening Behavior of Thermal Sprayed Particles, Proceedings of the 4th Asian Thermal Spray Conference (ATSC2009), chaired by C.J. Li, October 22-24, 2009 (Xi’an, China), p 226-231

  21. C. Mundo, M. Sommerfeld, and C. Tropea, Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process, Int. J. Multiphase Flow, 1995, 21(2), p 151-173

    Article  CAS  Google Scholar 

  22. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  CAS  Google Scholar 

  23. C. Escure, M. Vardelle, A. Vardelle, and P. Fauchais, Visualization on the Impact of Drops on a Substrate in Plasma Spraying: Deposition and Splashing Modes, Proceedings of the International Thermal Spraying Conference 2001, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 25-29, 2001 (Singapore), ASM International, Materials Park, OH, 2001, p 805-812

  24. H. Li, S. Costil, H.L. Liao, C.J. Li, M. Planche, and C. Coddet, Effects of Surface Conditions on the Flattening Behavior of Plasma Sprayed Cu Splats, Surf. Coat Technol., 2006, 200, p 5435-5446

    Article  CAS  Google Scholar 

  25. M. Fukumoto, E. Nishioka, and T. Matsubara, Flattening and Solidification Behavior of a Metal Droplet on a Flat Substrate Surface Held at Various Temperatures, Surf. Coat Technol., 1999, 120-121, p 131-137

    Article  CAS  Google Scholar 

  26. Y. Heichal and S. Chandra, Predicting Thermal Contact Resistance Between Molten Metal Droplets and a Solid Surface, J. Heat Transf., 2005, 127, p 1269-1275

    Article  CAS  Google Scholar 

  27. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, A Three-Dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transf., 2002, 45, p 2229-2242

    Article  CAS  Google Scholar 

  28. S.D. Aziz and S. Chandra, Impact, Recoil and Splashing of Molten Metal Droplets, Int. J. Heat Mass Transf., 2000, 43, p 2841-2857

    Article  Google Scholar 

  29. R.G. Azar, Z. Yang, S. Chandra, and J. Mostaghimi, Impact of Molten Metal Droplets on the Tip of a Pin Projecting From a Flat Surface, Int. J. Heat Fluid Flow, 2005, 26, p 334-347

    Article  CAS  Google Scholar 

  30. M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi, Deposition of Tin Droplets on a Steel Experiments Plate: Simulations and Experiments, Int. J. Heat Mass Transf., 1998, 41, p 2929-2945

    Article  CAS  Google Scholar 

  31. Y. Tanaka, S. Yoshida, and R. Kawase, Effect of Impact Velocity and Preheated Substrate Temperature on Flattening and Solidifying Behavior of Free Falling Metal Droplet, J. Jpn. Therm. Spray Soc., 2010, 47(2), p 54-60, (in Japanese)

    CAS  Google Scholar 

  32. L. Battezzati and A.L. Greer, The Viscosity of Liquid Metals and Alloys, Acta Metall., 1989, 37(7), p 1791-1802

    Article  CAS  Google Scholar 

  33. S.G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Trans. Camb. Philos. Soc., 1851, 9, p 8-106

    Google Scholar 

  34. O. Reynolds, An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels, Philos. Trans. R. Soc., 1883, 174, p 935-982

    Article  Google Scholar 

  35. N. Rott, Note on the History of the Reynolds Number, Annu. Rev. Fluid Mech., 1990, 22, p 1-11

    Article  Google Scholar 

  36. Y. Heichal, S. Chandra, and E. Bordatchev, A Fast-Response Thin Film Thermocouple to Measure Rapid Surface Temperature Changes, Exp. Therm Fluid Sci., 2005, 30(2), p 153-159

    Article  CAS  Google Scholar 

  37. M. Qu and A. Gouldstone, On the Role of Bubbles in Metallic Splat Nanopores and Adhesion, J. Therm. Spray Technol., 2008, 17(4), p 486-494

    Article  CAS  Google Scholar 

  38. C.J. Li and J.L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Article  Google Scholar 

  39. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat Technol., 2004, 184, p 13-23

    Article  CAS  Google Scholar 

  40. M. Qu, Y. Wu, V. Srinivasan, and A. Gouldstone, Observations of Nanoporous Foam Arising From Impact and Rapid Solidification of Molten Ni Droplets, Appl. Phys. Lett., 2007, 90, p 254101-1-254101-3

  41. A.T.T. Tran and M.M. Hyland, The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations, J. Therm. Spray Technol., 2009, 19(1-2), p 11-23

    Article  Google Scholar 

  42. V.E. Henrich and P.A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, New York, 1994

  43. A. McDonald, M. Lamontagne, C. Moreau, and S. Chandra, Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces, Thin Solid Films, 2006, 514, p 212-222

    Article  CAS  Google Scholar 

  44. A. McDonald, C. Moreau, and S. Chandra, Thermal Contact Resistance Between Plasma Sprayed Particles and Flat Surfaces, Int. J. Heat Mass Transf., 2007, 50, p 1737-1749

    Article  CAS  Google Scholar 

  45. R.H.S. Winterton, Newton’s Law of Cooling, Contemp. Phys., 1999, 40(3), p 205-212

    Article  CAS  Google Scholar 

  46. X. Jiang, Y. Wan, H. Herman, and S. Sampath, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray, Thin Solid Films, 2001, 385, p 132-141

    Article  CAS  Google Scholar 

  47. M. Fukumoto, H. Nagai, and T. Yasui, Influence of Surface Character Change of Substrate Due to Heating on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2006, 15(4), p 759-764

    Article  CAS  Google Scholar 

  48. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988-994

    Article  CAS  Google Scholar 

  49. T. Uelzen and J. Muller, Wettability Enhancement by Rough Surfaces Generated by Thin Film Technology, Thin Solid Films, 2003, 434, p 311-315

    Article  CAS  Google Scholar 

  50. S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5(4), p 445-456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mr. Y. Ebisuno and T. Matsuda for their assistance and valuable discussions in the experiments. This research was partially supported both by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Culture and Sports in Japan, and by a special research fund in Toyohashi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fukumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, M., Yang, K., Tanaka, K. et al. Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface. J Therm Spray Tech 20, 48–58 (2011). https://doi.org/10.1007/s11666-010-9537-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9537-5

Keywords

Navigation