Skip to main content
Log in

The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

NiCr single splats were plasma-sprayed on aluminum and stainless steel substrates, which were modified by immersion in boiling water, to grow specific types of oxide/oxyhydroxide on the surface. It was observed that there was no splat formation on aluminum substrate. In contrast, a significant number of splats were formed on stainless steel substrate. The differences in splat formation on aluminum and stainless steel surfaces corresponded to the variations of thickness and proportions of the oxide/oxyhydroxide layer on the surfaces. A three-dimensional numerical model was developed to simulate the impact of a droplet onto the substrate. The simulation illustrated good agreement with experimental observations. The effect of the oxide layer on the splat morphology was also examined. It was suggested that the splat morphology was more strongly influenced by water release from the dehydration of oxyhydroxide to oxide rather than by simple presence of the oxide layer on the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B :

body force

C p :

specific heat capacity

f :

mass fraction

F :

volume of fraction of the droplet

k :

thermal conductivity

L :

latent heat of fusion

n :

interface normal vector pointing from the droplet to air

R c :

thermal contact resistance at the droplet-substrate interface

T :

temperature

T 0 :

substrate initial temperature

T m :

equilibrium melting temperature

p :

pressure

t :

time

u :

velocity vector

α:

thermal diffusivity

ρ:

density

μ:

effective viscosity

σ:

surface tension coefficient

κ:

surface curvature

δ:

interface delta function

l:

liquid phase

m:

equilibrium melting temperature

ox:

oxide

s:

solid

sub:

substrate

α:

droplet

β:

air

References

  1. S. Chandra and P. Fauchais, Formation of Solid Splats during Thermal Spray Deposition, J. Thermal Spray Technol., 2009, 18(2), p 148-180

    Article  CAS  ADS  Google Scholar 

  2. P. Fauchais, M. Fukumoto, A. Vardella, and M. Vardella, Knowledge Concerning Splat Formation: An Invited Review, J. Thermal Spray Technol., 2004, 13(3), p 337-360

    Article  CAS  ADS  Google Scholar 

  3. S. Dallaire, Influence of Temperature on the Bonding Mechanism of Plasma-Sprayed Coatings, Thin Solid Films, 1982, 95(3), p 237-244

    Article  CAS  ADS  Google Scholar 

  4. R.C. Dykhuizen, Review of Impact and Solidification of Molten Thermal Spray Droplets, J. Thermal Spray Technol., 1994, 3(4), p 351-361

    Article  CAS  ADS  Google Scholar 

  5. M. Fukumoto, H. Nagai, and T. Yasui, Influence of Surface Character Change of Substrate due to Heating on Flattening Behavior of Thermal Spray Particle, J. Thermal Spray Technol., 2006, 15(4), p 759-764

    Article  CAS  ADS  Google Scholar 

  6. M. Fukumoto, I. Ohgitani, M. Shiiba, and T. Yasui, Effect of Substrate Surface Change by Heating on Transition in Flattening Behavior of Thermal Sprayed Particles, Mater. Trans., 2004, 45(6), p 1869-1873

    Article  CAS  Google Scholar 

  7. X. Jiang, W. Yuepeng, H. Herbert, and S. Sanjay, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray, Thin Solid Films, 2001, 385(1-2), p 132-141

    Article  CAS  ADS  Google Scholar 

  8. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2003, 184(1), p 13-23

    Article  Google Scholar 

  9. M. Fukumoto and Y. Huang, Flattening Mechanism in Thermal Sprayed Ni Particles Impinging on Flat Substrate Surface, J. Thermal Spray Technol., 1999, 8(3), p 427-432

    Article  CAS  ADS  Google Scholar 

  10. M. Fukumoto, T. Yamaguchi, M. Yamada, and T. Yasui, Splash Splat to Disk Splat Transition Behavior in Plasma-Sprayed Metallic Materials, J. Thermal Spray Technol., 2007, 16(5-6), p 905-912

    Article  CAS  ADS  Google Scholar 

  11. A. McDonald, M. Lamontagne, C. Moreau, and S. Chandra, Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces, Thin Solid Films, 2006, 514(4), p 212-222

    Article  CAS  ADS  Google Scholar 

  12. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Thermal Spray Technol., 2003, 12, p 370-376

    Article  CAS  ADS  Google Scholar 

  13. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Thermal Spray Technol., 2001, 11, p 206-217

    Article  ADS  Google Scholar 

  14. A.T.T. Tran, M.M. Hyland, T. Qiu, B. Withy, and B.J. James, Effects of Surface Chemistry on Splat Formation during Plasma Spraying, J. Thermal Spray Technol., 2008, 17(5-6), p 637-645

    Article  CAS  ADS  Google Scholar 

  15. J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, and A. Dolatabadi, Modeling Thermal Spray Coating Processes: A Powerful Tool in Design and Optimization, Surf. Coat. Technol., 2003, 163-164, p 1-11

    Article  CAS  Google Scholar 

  16. M.F. Bahbou and P. Nylen, On-line Measurement of Plasma-Sprayed Ni-Particles During Impact on a Ti-Surface: Influence of Surface Oxidation, J. Thermal Spray Technol., 2007, 16(4), p 506-511

    Article  CAS  ADS  Google Scholar 

  17. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, A Three-Dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transfer, 2002, 45, p 2229-2242

    Article  MATH  CAS  Google Scholar 

  18. A. McDonald, M. Xue, S. Chandra, J. Mostaghimi, and C. Moreau, Modeling Fragmentation of Plasma-Sprayed Particles Impacting on a Solid Surface at Room Temperature, Comptes Rendus Mecanique, 2007, 335, p 351-356

    Article  CAS  Google Scholar 

  19. H.R. Salimijazi, M. Raessi, J. Mostaghimi, and T.W. Coyle, Study of Solidification Behavior and Splat Morphology of Vacuum Plasma Sprayed Ti Alloy by Computational Modeling and Experimental Results, Surf. Coat. Technol., 2007, 201(18), p 7924-7931

    Article  CAS  Google Scholar 

  20. M. Bussmann, J. Mostaghimi, and S. Chandra, On a Three-Dimensional Volume Tracking Model of Droplet Impact, Phys. Fluids, 1999, 11, p 1406-1417

    Article  MATH  CAS  ADS  Google Scholar 

  21. M. Bussmann, S. Chandra, and J. Mostaghimi, Modeling the Splash of a Droplet Impacting a Solid Surface, Phys. Fluids, 2000, 12, p 3121-3132

    Article  CAS  ADS  Google Scholar 

  22. J. Cedelle, M. Vardelle, and P. Fauchais, Influence of Stainless Steel Substrate Preheating on Surface Topography and on Millimeter- and Micrometer-sized Splat Formation, Surf. Coat. Technol., 2006, 201, p 1373-1382

    Article  CAS  Google Scholar 

  23. A. McDonald, C. Moreau, and S. Chandra, Effect of Substrate Oxidation on Spreading of Plasma-Sprayed Nickel on Stainless Steel, Surf. Coat. Technol., 2007, 202, p 23-33

    Article  CAS  Google Scholar 

  24. A. McDonald, S. Chandra, and C. Moreau, Photographing Impact of Plasma-Sprayed Particles on Rough Substrates, J. Mater. Sci., 2008, 43, p 4631-4643

    Article  CAS  ADS  Google Scholar 

  25. H.B. Parizi, L. Rosenzweig, J. Mostaghimi, S. Chandra, T. Coyle, H. Salimi, L. Pershin, A. McDonald, and C. Moreau, Numerical Simulation of Droplet Impact on Patterned Surfaces, J. Thermal Spray Technol., 2007, 16(5-6), p 713-721

    Article  CAS  ADS  Google Scholar 

  26. J.U. Brackbill, D.B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, 100, p 335-354

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  27. S.-P. Wang, G.-X. Wang, and E.F. Matthys, Melting and Resolidification of a Substrate in Contact with a Molten Metal: Operational Maps, Int. J. Heat Mass Transfer, 1998, 41(10), p 1177-1188

    Article  MATH  CAS  Google Scholar 

  28. W.D. Bennon and F.P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation, Int. J. Heat Mass Transfer, 1987, 30(10), p 2161-2170

    Article  MATH  CAS  Google Scholar 

  29. C. Prakash and V. Voller, On the Numerical Solution of Continuum Mixture Model Equations Describing Binary Solid-Liquid Phase Change, Numer. Heat Transfer B, 1989, 15(2), p 171-189

    Article  MATH  ADS  Google Scholar 

  30. C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, 39, p 201-225

    Article  MATH  ADS  Google Scholar 

  31. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 2007

    Google Scholar 

  32. Ansys Inc., Ansys CFX Documentation, 2007, USA

  33. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Splat-Substrate Interface for a NiCr Coating Plasma Sprayed on to Polished Aluminum and Stainless Steel Substrates, in International Thermal Spray Coating: Expanding Thermal Spray Performance to New Markets and Applications, 2009, Las Vegas, US

  34. W.J. Trompetter, Splat-Substrate Interactions in High Velocity Thermal Spray Coatings, PhD thesis, University of Auckland, 2008

  35. A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre, Examination of the Oxidation of Iron by Oxygen using X-ray Photoelectron Spectroscopy and QUASES, Surf. Sci., 2004, 565(2-3), p 151-162

    Article  CAS  ADS  Google Scholar 

  36. M.R. Alexander, G.E. Thompson, and G. Beamson, Characterization of the Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1 s Core Level, Surf. Interface Anal., 2000, 29(7), p 468-477

    Article  CAS  Google Scholar 

  37. R. Dhiman and S. Chandra, Freezing-Induced Splashing During Impact of Molten Metal Droplets with High Weber Numbers, Int. J. Heat Mass Transfer, 2005, 48(25-26), p 5625-5638

    Article  CAS  Google Scholar 

  38. A. McDonald, C. Moreau, and S. Chandra, Thermal Contact Resistance Between Plasma-Sprayed Particles and Flat Surfaces, Int. J. Heat Mass Transfer, 2007, 50, p 1737-1749

    Article  MATH  CAS  Google Scholar 

  39. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201, p 7789-7801

    Article  CAS  Google Scholar 

  40. A. McDonald, C. Moreau, and S. Chandra, Thermal Contact Resistance Between Plasma-Sprayed Particles and Flat Surfaces, Int. J. Heat Mass Transfer, 2006, 50, p 1737-1749

    Article  Google Scholar 

  41. D.R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition (CDROM Version 2006), Taylor and Francis, Boca Raton, FL, 2006

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Tertiary Education Commission of New Zealand for Top Achiever Doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. T. Tran.

Additional information

This article is an invited paper selected from presentations at the 2009 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Expanding Thermal Spray Performance to New Markets and Applications: Proceedings of the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, A.T.T., Hyland, M.M. The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations. J Therm Spray Tech 19, 11–23 (2010). https://doi.org/10.1007/s11666-009-9414-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9414-2

Keywords

Navigation