Skip to main content
Log in

Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Joining technology is an integral part of today’s Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Hodgson and S. Russell, Nitinol Melting, Manufacture and Fabrication, Minim. Invas. Ther. Allied Technol., 2000, 9(2), p 61–66

    Article  Google Scholar 

  2. G. Siekmeyer, R. Steegmüller, B. Schrader, A. Hegel, M. Strobel, and A. Schuessler, Novel Micro-Joining Techniques to Improve Stent Radiopacity. A Comparison of Welding and Riveting Processes, in Proceedings of ASM MPMD 2005, 2006, p 57–62.

  3. P. Schlossmacher, T. Haas, and A. Schuessler, Laser-Welding of a Ni-Rich TiNi Shape Memory Alloy: Mechanical Behavior, J. Phys. IV, 1997, 7, p C5-251–C5-256

    Google Scholar 

  4. N.A. Smith, G.G. Antoun, A.B. Ellis, and W.C. Crone, Improved Adhesion Between Nickel-Titanium Shape Memory Alloy and a Polymer Matrix via Silane-Coupling Agents, Compos. A Appl. Sci. Manuf., 2004, 35, p 1312–1407

    Article  Google Scholar 

  5. H.C. Man and N.Q. Zhao, Enhancing the Adhesive Bonding Strength of NiTi Shape Memory Alloys by Laser Gas Nitriding and Selective Etching, Appl. Surf. Sci., 2006, 253, p 1595–2000

    Article  Google Scholar 

  6. B.K. Jang and T. Kishi, Adhesive Strength Between TiNi Fibres Embedded in CFRP Composites, Mater. Lett., 2005, 59, p 1338–1341

    Article  Google Scholar 

  7. L. Nanis, Low-Temperature Flux for Soldering Nickel-Titanium Alloys and Other Metals, 2005, US Patent 6,953,146.

  8. R. Hahnlen, G. Fox, and M. Dapino, Ultrasonic Soldering of Shape Memory NiTi to Aluminum 2024, Weld. J., 2012, 91, p 1s–7s

    Google Scholar 

  9. J.A. Shaw, D.S. Grummon, and J. Foltz, Superelastic NiTi Honeycombs: Fabrication and Experiments, Smart Mater. Struct., 2007, 16, p S170–S178

    Article  Google Scholar 

  10. H. Gugel, A. Schuermann, and W. Theisen, Laser Welding of NiTi Wires, Mater. Sci. Eng. A, 2008, 481–482, p 668–671

    Article  Google Scholar 

  11. H. Gugel, and W. Theisen, Microstructural Investigations of Laser Welded Dissimilar Nickel-Titanium-Steel Joints, in Proceedings of ESOMAT 2009, 05009.

  12. P.C. Hall, Laser Welding Nitinol to Stainless Steel, Proc. SMST, 2003, 2004, p 219–228

    Google Scholar 

  13. H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and W.Q. Wang, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Ni Interlayer, Mater. Des., 2012, 39, p 285–293

    Article  Google Scholar 

  14. G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI304 Stainless Steel, Opt. Laser Technol., 2013, 54, p 151–158

    Article  Google Scholar 

  15. T.G. Santos, F.B. Fernandes, G. Bernardo, and R.M. Miranda, Analyzing Mechanical Properties and Nondestructive Characteristics of Brazed Joints of NiTi Shape Memory Alloys to Carbon Steel Rods, Int. J. Adv. Manuf. Technol., 2013, 66, p 787–793

    Article  Google Scholar 

  16. S. Meir, S. Gordon, M. Karsh, A. Wiezman, R. Ayers, and D.L. Olson, Nondestructive Evaluation of Ni-Ti Shape Memory Alloy, AIP Conf. Proc., 2011, 1335, p 1208

    Article  Google Scholar 

  17. G. Busse and H.G. Walther, Photothermal Non-Destructive Evaluation of Materials with Thermal Waves, Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, Ed., Elsevier, New York, 1992, p 207–298

    Google Scholar 

  18. B. Schmitz, J. Geerkens, U. Seidel, and G. Goch, Grundlagen der photothermischen zerstörungsfreien Materialprüfung, Tech. Mess., 1998, 65(5), p 177–184

    Google Scholar 

  19. X International Conference on Photoacoustic and Photothermal Phenomena, ed. by F. Scuderi, M. Bertolotti, in AIP Conference Proceedings, vol. 463, 1999.

  20. U. Seidel, T.T.N. Lan, H.G. Walther, B. Schmitz, J. Geerkens, and G. Goch, Quantitative Characterization of Material Inhomogeneities by Thermal Waves, Opt. Eng., 1997, 36(2), p 376–390

    Article  Google Scholar 

  21. G. Goch, B. Schmitz, B. Karpuschewski, J. Geerkens, M. Reigl, P. Sprongl, and R. Ritter, Review of Non-destructive Measuring Methods for the Assessment of Surface Integrity: A Survey of New Measuring Methods for Coatings, Layered Structures and Processed Surfaces, Precis. Eng., 1999, 23, p 9–33

    Article  Google Scholar 

  22. R.E. Imhof, B. Zhang, and D.J.S. Birch, Photothermal Radiometry for NDE, Non-Destructive Evaluation, Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, Ed., Prentice Hall, Englewood Cliffs, 1994, p 185–236

    Google Scholar 

  23. P.E. Nordal and S.O. Kanstad, Experimental Aspects of Photothermal Radiometry, Can. J. Phys., 1986, 64, p 1155–1164

    Article  Google Scholar 

  24. R.D. Tom, E.P. O’Hara, and D. Benin, A Generalised Model of Photothermal Radiometry, J. Appl. Phys., 1982, 53(8), p 5392–5400

    Article  Google Scholar 

  25. L.C.M. Miranda, On the Use of the Thermal Lens Effect as a Thermo-optical Spectroscopy of Solids, Appl. Phys. A, 1983, 32, p 87–93

    Article  Google Scholar 

  26. G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, Wiley Interscience, New York, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wohlschlögel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohlschlögel, M., Gläßel, G., Sanchez, D. et al. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing. J. of Materi Eng and Perform 24, 4991–4996 (2015). https://doi.org/10.1007/s11665-015-1791-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1791-8

Keywords

Navigation