Skip to main content
Log in

Combustion Synthesis and Optical Properties of Eu3+-Doped BaGd2ZnO5 ff Transition Nanophosphor for White LED

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An Eu3+-doped BaGd2(1−x)ZnO5 nanophosphor has been synthesized by means of a single-step, urea-assisted, solution-combustion process. The structural, morphological, and optical properties of the nanophosphor were studied by x-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The XRD results showed that the pure orthorhombic BaGd2ZnO5 structure with space group Pbnm was obtained at 900°C. The intense red luminescence at 628 nm on near-UV (396 nm) excitation is because of the hypersensitive 5D0  7F2 transition of luminescent activator Eu3+ ions, located at a site with no inversion symmetry in the BaGd2ZnO5 crystal lattice. The optimum doping concentration and decay time of Eu3+-doped BaGd2(1−x)ZnO5 nanophosphor were also determined. The emission could be effectively tuned from blue to the white and red regions by varying the concentration of europium ions. Decay curve analysis revealed that cross-relaxation is primarily responsible for the concentration quenching. High luminescent intensity, low-cost, easy synthesis, uniform shape, and controlled color tunability suggest use of BaGd2ZnO5:Eu3+ as an efficient red-emitting nanophosphor for near-UV-based LED solid-state lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sailaja, S.J. Dhoble, and S.S. Reddy, J. Mol. Struct. 1003, 115 (2011).

    Article  Google Scholar 

  2. X. Dhou, W. Zhao, E. Song, G. Zhou, C. Yi, and M. Zhou, Spectrochim. Acta A 78, 821 (2011).

    Article  Google Scholar 

  3. Z. Cui, R. Ye, D. Deng, Y. Hua, S. Zhao, G. Jia, C. Li, and S. Xu, J. Alloys Compd. 509, 3553 (2011).

    Article  Google Scholar 

  4. X. Yan, W. Li, and K. Sun, Mater. Res. Bull. 46, 87 (2011).

    Article  Google Scholar 

  5. C.K. Chang and T.M. Chen, Appl. Phys. Lett. 91, 081902 (2007).

    Article  Google Scholar 

  6. J.S. Kim, P.E. Jeon, Y.H. Park, and J.C. Choi, Appl. Phys. Lett. 85, 3696 (2004).

    Article  Google Scholar 

  7. J.K. Park, M.A. Lim, C.H. Kim, and H.D. Park, Appl. Phys. Lett. 82, 683 (2003).

    Article  Google Scholar 

  8. Y.D. Huh, J.H. Shim, Y. Kim, and Y.R. Do, J. Electrochem. Soc. 150, H57 (2003).

    Article  Google Scholar 

  9. V.R. Bandi, B.K. Grandhe, K. Jang, H.S. Lee, D.S. Shin, S.S. Yi, and J.H. Jeong, J. Alloys Compd. 512, 264 (2012).

    Article  Google Scholar 

  10. C. Guo, J. Yu, J.H. Jeong, Z. Ren, and J. Bai, Phys. B 406, 916 (2011).

    Article  Google Scholar 

  11. H.Y. Chen, R.Y. Yang, and S.J. Chang, Mater. Lett. 64, 2548 (2010).

    Article  Google Scholar 

  12. C.H. Liang, Y.C. Chang, and Y.S. Chang, Appl. Phys. Lett. 93, 211902 (2008).

    Article  Google Scholar 

  13. M.J.J. Lammers, H. Donker, and G. Blasse, Mater. Chem. Phys. 13, 527 (1985).

    Article  Google Scholar 

  14. Y. Huang, L. Shi, E.S. Kim, and H.J. Seo, Appl. Phys. Lett. 105, 013512 (2009).

    Google Scholar 

  15. B. Tian, B. Chen, Y. Tian, J. Sun, X. Li, J. Zhang, H. Zhong, L. Cheng, and R. Hua, J. Phys. Chem. Solids 73, 1314 (2012).

    Article  Google Scholar 

  16. C. Guo, X. Ding, and Y. Xu, J. Am. Ceram. Soc. 93, 1708 (2010).

    Article  Google Scholar 

  17. J.A. Kaduk, W. Wong-Ng, W. Greenwood, J. Dillingham, and B.H. Toby, J. Res. Natl. Inst. Stand. Technol. 104, 147 (1999).

    Article  Google Scholar 

  18. R. Krsmanovic, Z. Antic, B. Bartova, and M.D. Dramicanin, J. Alloys Compd. 505, 224 (2010).

    Article  Google Scholar 

  19. P.S.A. Kumar, J.J. Shrotri, S.D. Kulkarni, C.E. Deshpande, and S.K. Date, Mater. Lett. 27, 293 (1996).

    Article  Google Scholar 

  20. Z. Jun, W.Y. Hua, L.B. Tao, and L.J. Di, Chin. Phys. B 19, 127809 (2010).

    Article  Google Scholar 

  21. B.K. Grandhe, V.R. Bandi, K. Jang, S. Ramaprabhu, S. Yi, and J. Jeong, Electron. Mater. Lett. 7, 161 (2011).

    Article  Google Scholar 

  22. M. Galceran, M.C. Pujol, M. Aguilo, and F. Diaz, Mater. Sci. Eng. B 146, 7 (2008).

    Article  Google Scholar 

  23. B. Mari, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, and M. Kumar, J. Lumin. 130, 2128 (2010).

    Article  Google Scholar 

  24. B. Mari, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, and M. Kumar, J. Lumin. 131, 587 (2011).

    Article  Google Scholar 

  25. V.B. Taxak, Sheetal, Dayawati, and S.P. Khatkar, Curr. Appl. Phys. 13, 594 (2013).

    Article  Google Scholar 

  26. V.B. Taxak, Sheetal, Mandeep, and S.P. Khatkar, J. Alloys Compd. 135, 549 (2013).

    Google Scholar 

  27. S. Ekambaram, M. Maaza, and K.C. Patil, J. Alloys Compd. 393, 81 (2005).

    Article  Google Scholar 

  28. X.Y. Sun, L.W. Lin, W.F. Wang, and J.C. Zhang, Appl. Phys. A 104, 83 (2011).

    Article  Google Scholar 

  29. S. Kubota, Y. Suzuyama, H. Yamane, and M. Shimada, J. Alloys Compds. 268, 66 (1998).

    Article  Google Scholar 

  30. D. Hrenaik, W. Strek, P. Deren, A. Bednarkiewicz, and A. Lukowaik, J. Alloys Compd. 828, 408 (2006).

    Google Scholar 

  31. A.H. Kitai, Solid State Luminescence (London: Chapman & Hall, 1993), p. 38.

    Book  Google Scholar 

  32. G. Blasse and B.C. Grabmaier, Luminescent Materials (Heidelberg: Springer, 1994).

    Book  Google Scholar 

Download references

Acknowledgement

One of the authors, Ms Sonika, gratefully acknowledges financial support in the form of JRF (UGC) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Bala Taxak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Khatkar, S.P., Arora, R. et al. Combustion Synthesis and Optical Properties of Eu3+-Doped BaGd2ZnO5 ff Transition Nanophosphor for White LED. J. Electron. Mater. 43, 1174–1180 (2014). https://doi.org/10.1007/s11664-014-3061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3061-1

Key words

Navigation