Skip to main content
Log in

High-Temperature Transport Properties of Yb4−x Sm x Sb3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.A. Gschneidner Jr., J.F. Nakahara, B.J. Beaudry, and T. Takeshita, Mater. Res. Soc. Symp. Proc. 97, 359 (1987).

    CAS  Google Scholar 

  2. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  CAS  ADS  Google Scholar 

  3. L.R. Danielson, M.N. Alexander, C. Vining, R.A. Lockwood, and C. Wood, Seventh International Conference on Thermoelectric Energy Conversion (Arlington, TX, 16–18 March 1988), p. 71.

  4. A. May, J. Snyder, and J.-P. Fleurial, Space Technology and Applications International Forum (Albuquerque, NM, 10–14 February 2008), ed. M.S. El-Genk, American Institute of Physics, Melville, NY, p. 672.

  5. A. May, J.-P. Fleurial, and J. Snyder, Phys. Rev. B 78, 125205 (2008).

    Article  ADS  Google Scholar 

  6. D. Hohnke and E. Parthé, Acta Cryst. 21, 435 (1966).

    Article  CAS  Google Scholar 

  7. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).

    Article  CAS  ADS  Google Scholar 

  8. L.J. Van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  9. C. Wood, D. Zoltan, and G. Stapfer, Rev. Sci. Instrum. 56, 5 (1958).

    Google Scholar 

  10. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  CAS  ADS  Google Scholar 

  11. R.J. Gambino, J. Less-Common Met. 12, 344 (1967).

    Article  CAS  Google Scholar 

  12. R.E. Bodnar and H. Steinfink, Inorg. Chem. 6, 327 (1967).

    Article  CAS  Google Scholar 

  13. Y. Wang, L.D. Calvert, and J.B. Taylor, Acta Cryst. B36, 221 (1980).

    Google Scholar 

  14. A. Ochiai, S. Nakai, A. Oyamada, T. Suzuki, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 570 (1985).

    Article  Google Scholar 

  15. E. Bucher, A.S. Cooper, D. Jaccard, and J. Sierro, Valence Instabilities and Related Narrow Band Phenomena, ed. R.D. Parks (New York: Plenum, 1977), p. 529.

    Google Scholar 

  16. A. Ochiai, T. Suzuki, and T. Kasuya, J. Phys. Soc. Jpn. 59, 4129 (1990).

    Article  CAS  ADS  Google Scholar 

  17. S. Suga, S. Ogawa, H. Namatame, M. Tanigushi, A. Kakizaki, T. Ishii, A. Fujimori, S. Oh, H. Kato, T. Miyahara, A. Ochiai, T. Suzuki, and T. Kasuya, J. Phys. Soc. Jpn. 58, 4534 (1989).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chamoire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamoire, A., Gascoin, F., Estournès, C. et al. High-Temperature Transport Properties of Yb4−x Sm x Sb3 . J. Electron. Mater. 39, 1579–1582 (2010). https://doi.org/10.1007/s11664-010-1274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1274-5

Keywords

Navigation