Skip to main content
Log in

Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper details both the theoretical and experimental results of a modified model for designing MgF2/ZnS double-layer antireflection coatings for AlGaAs/GaAs heteroface solar cells. The main contribution of the model presented is that it takes into account the possible existence of an oxide layer in the AlGaAs window layer. In a first step the optical behavior of the oxide is modeled and that model is used to recalculate optimal double-layer antireflection coating when a thin AlGaAs oxide layer is present. Significant differences with classical double-layer antireflection coating design are found, such as, the antireflection properties of the oxide layer when formed onto originally thick windows or its equivalent role to that of the ZnS layer (as a high refractive index media) in the coating. Finally, an experimental analysis is carried out to assess empirically the conclusions of the model. These experiments have yielded an excellent agreement with the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Algora and M. Felices, IEEE Trans. Electron Dev. 44, 1499 (1997).

    Article  Google Scholar 

  2. M.E. Nell, Z. El-Ankah, H. Eschrich, D.D. Lin, G. Nischwitz, and H.G. Wagemann, Proc. 10th European Photovoltaic Solar Energy Conf. (Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991), p. 545.

    Google Scholar 

  3. N.D. Arora and J.R. Hauser, J. Appl. Phys. 53, 8839 (1982).

    Article  CAS  Google Scholar 

  4. A. Yoshikawa and H. Kasai, J. Appl. Phys. 52, 4345 (1981).

    Article  CAS  Google Scholar 

  5. G. Habermann, A. Bett, F. Lutz, C. Schetter, O.V. Sulima, and W. Wettling, Proc. 11th European Photovoltaic Solar Energy Conf. (Chur, Switzerland: Harwood Academic Publishers, 1993), p. 217.

    Google Scholar 

  6. M.M. Sanfacon, S.T. Tobin, IEEE Trans. Electron Dev. 37, 450 (1990).

    Article  CAS  Google Scholar 

  7. G. Zhang, J. Zhao, and M.A. Green, Solar Energy Materials and Solar Cells 51, 393 (1998).

    Article  CAS  Google Scholar 

  8. J. Zhao and M.A. Green, IEEE Trans. Electron Dev. 38, 1925 (1991).

    Article  CAS  Google Scholar 

  9. I. Rey-Stolle and C. Algora, J. Electron. Mater. 29, 992 (2000).

    CAS  Google Scholar 

  10. S. Adachi, editor, Properties of Aluminum Gallium Arsenide (London: INSPEC, 1993), p. 238.

    Google Scholar 

  11. In silicon technology this kind of unintentional oxidation is normally referred as native oxidation. However in III-V’s the term native is used to describe an oxide material formed directly from the semiconductor itself as opposed to a foreign oxide composed of a deposited film. Therefore in III-V technology native oxides could have an intentional and perfectly controlled origin and thus we will keep on using the term uncontrolled oxide to refer to the oxide layer.

  12. V.M. Andreev, personal communication.

  13. V. Díaz, C. Algora, and I. Rey-Stolle Proc. of 2nd World Photovoltaic Solar Energy Conf. (Luxembourg: Office for Official Publications of the European Communities, 1998), p. 217.

    Google Scholar 

  14. T.L. Makarova, L.V. Sharonova, and Y.V. Shmartsev, J. Amer. Inst. Phys. 27, 1008 (1994).

    Google Scholar 

  15. H.C. Hamaker, J. Appl. Phys. 58, 2344 (1985).

    Article  CAS  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics, 6th ed. (New York: Pergamon, 1980).

    Google Scholar 

  17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge, U.K.: Cambridge University Press, 1992), p. 105.

    Google Scholar 

  18. E.D. Palik, Handbook of Optical Constants of Solids (New York: Academic Press, 1985).

    Google Scholar 

  19. D.E. Aspnes, S.M. Kelso, R.A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986).

    Article  CAS  Google Scholar 

  20. A.N. Pikhtin and A.D. Yaskov, Sov. Phys. Semicond. 12, 622 (1978).

    Google Scholar 

  21. S. Adachi, J. Appl. Phys. 58, 21 (1985).

    Article  Google Scholar 

  22. R.E. Fern and A. Onton, J. Appl. Phys. 42, 3499 (1971).

    Article  CAS  Google Scholar 

  23. M. Garriga, P. Lautenschlager, M. Cardona, and K. Ploog, Solid State Commun. 61, 157 (1987).

    Article  CAS  Google Scholar 

  24. D.E. Aspnes, G.P. Schwartz, G.J. Gualtieri, A.A. Studna, and B. Schwartz, J. Electrochem. Soc. 128, 590 (1981).

    Article  CAS  Google Scholar 

  25. L.E. Tarof, Applied Optics 27, 4798 (1988).

    Article  CAS  Google Scholar 

  26. L.E. Tarof, C.J. Miner, and A.J. Springthorpe, J. Electron. Mater. 18, 361 (1989).

    CAS  Google Scholar 

  27. C. Algora, J. Electron. Mater. 29, 436 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey-Stolle, I., Algora, C. Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation. J. Electron. Mater. 29, 984–991 (2000). https://doi.org/10.1007/s11664-000-0192-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0192-3

Key words

Navigation