Skip to main content
Log in

Failure during Sheared Edge Stretching of Dual-Phase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The use of dual-phase steels has been limited in a number of applications, due to failure during sheared edge stretching. Previous investigations have studied the properties of dual-phase steels, especially regarding the mechanical properties of the individual phases or constituents, the strain partitioning to the microconstituents during loading, and the decohesion at the interface during loading. On the basis of the literature review, a hypothesis is developed in which failure in sheared edge stretching is the result of a sequence of events. Cracking first develops in the hard constituent, cracks grow in the interface between the hard constituent and ferrite, and relative movement of ferrite relative to the hard constituent increases the rate of cracking. In the present study, a single steel was heat treated to produce different amounts of hard constituent within the ferrite matrix in order to better understand the behavior of dual-phase steels during sheared edge stretching. The results of the study are consistent with the proposed hypothesis. It was found that in contrast to other studies, increased strength of the hard constituent retards crack initiation. Crack growth increased with increasing surface area of hard constituent–ferrite interfaces and increasing movement of ferrite relative to the hard constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G Krauss, Steels: Heat Treatment and Processing Principles, ASM International, Materials Park, OH, 1990.

    Google Scholar 

  2. W H McFarland (1965) Transactions of AIME, 233:2028-35.

    CAS  Google Scholar 

  3. W H McFarland (1969) Blast Furnace Steel Plant 57:132-145.

    CAS  Google Scholar 

  4. K Hasegawa, K Kawamure, T Urabe, Y Hosoya (2004) ISIJ Int 44:603-609.

    Article  CAS  Google Scholar 

  5. T Hűper, S Endo, N Ishikawa, K Osawa (1999) ISIJ Int. 39:288-294.

    Article  Google Scholar 

  6. Lee MG, Kim JH, Matlock DK, Wagoner RH (2010) In: F. Barlat, Y.H. Moon, M.G. Lee (eds) Proceedings of Numiform. American Institute of Physics, New York, pp. 149-152

    Google Scholar 

  7. R.W. Allen and B.S. Levy: Springs Mag., vol. 22(4), Oct 1983.

  8. N.K. Balliger, T. Gladman (1981) Metal Science, 15:95-108.

    Article  CAS  Google Scholar 

  9. D K Matlock, F Zia-Ebrahami, G Krauss (1984) In: G Krauss (ed) Deformation, Processing and Structure. ASM, Metals Park, OH, pp. 47–87.

    Google Scholar 

  10. T Ishiguro, Y Yoshida, N Yukawa, T Ishikawa, H Yoshida, N Fujita (2011) Journal of the Iron and Steel Institute of Japan 97:136-142.

    Article  CAS  Google Scholar 

  11. SK Paul (2012) Comput Mater Sci 56:34-42.

    Article  CAS  Google Scholar 

  12. J Kang, Y Ososkov, J D Embury, D S Wilkinson (2007) Scripta Mater 56:999-1002.

    Article  CAS  Google Scholar 

  13. X Sun, KS Choi, A Soulami, WN Liu, MA Khaleel (2009) Materials Science and Engineering A 526:140-149

    Article  Google Scholar 

  14. X Sun, KS Choi, A Soulami, WN Liu, MA Khaleel (2009) International Journal of Plasticity 25:1888-1909

    Article  CAS  Google Scholar 

  15. K Hasegawa, Y Toji, H Minami, H Ikeda, T Morikawa, K Higashida (2012) Tetsu to Hagane Journal of the Iron and Steel Institute of Japan 98:320-327.

    Article  CAS  Google Scholar 

  16. H Minami, K Nakayama, T Morikawa, K Higashida, Y Toji, K Hasegawa (2011) Tetsu to Hagane Journal of the Iron and Steel Institute of Japan 97:493-500.

    Article  CAS  Google Scholar 

  17. H Minami, H Ikeda, T Morikawa, K Higashida, T Mayama, Y Toji, K Hasegawa (2012) Tetsu to Hagane Journal of the Iron and Steel Institute of Japan 98:303-310.

    Article  CAS  Google Scholar 

  18. HP Shen, TC Lei, JZ Lui (1986) Mater Sci Technol 2:28-33

    Article  CAS  Google Scholar 

  19. A. Fallahi, R. Khamedi, G. Minak, A. Zucchelli (2012) Materials Sci Eng A 548:183-188.

    Article  CAS  Google Scholar 

  20. S B Lee, J G Speer, D K Matlock (2004) Proceedings of Conference on Advanced High Strength Steels. AIST, Warrendale, pp. 383–394.

    Google Scholar 

  21. S B Lee, D K Matlock, and J G Speer, Proceedings of 19 th Conference on Mechanical Behavior of Materials, Korean Institute of Metals and Materials, Seoul, Korea, 2005, pp. 183-197.

    Google Scholar 

  22. E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain, Journal of Engineering Materials and Performance, Vol. 21, 2012, pp. 382-387.

    Article  CAS  Google Scholar 

  23. T Kunio, M Shimizu, K Yamada, and H Suzuki, Engineering Fracture Mechanics, Vol. 7, 1975, pp. 411-417.

    Article  CAS  Google Scholar 

  24. E Ahmad, T Manzoor, N Hussain, and N K Qazi, Materials and Design, Vol. 29, 2008, pp. 450-457.

    Article  CAS  Google Scholar 

  25. E Ahmad, T Manzoor, and N Hussain, Materials Science and Engineering A, Vol. 508, 2009, pp. 259-265.

    Article  Google Scholar 

  26. J Gerbase, J D Embury, and R M Hobbs, in R.A. Kot and J.W. Morris, eds. Structure and Properties of Dual Phase Steels, TMS, Warrendale, PA, 1979, pp. 118-144.

    Google Scholar 

  27. G Avronovik-Cingara, Y Osokov, M K Jain, and D S Wilkinson, Materials Science and Engineering A, Vol. 516, 2009, pp. 7-16.

    Article  Google Scholar 

  28. J Kadkhodapour, A Butz, and S Ziaei Rad, Acta Materialia, Vol. 59, 2011, pp. 2575-2588.

    Article  CAS  Google Scholar 

  29. M. Ergodan, Journal of Materials Science, Vol. 37, 2002, pp. 3623-3630.

    Article  Google Scholar 

  30. A F Szewcyk and J Gurland, Metallurgical Transactions A, Vol. 13A, 1982, pp. 1821-1826.

    Google Scholar 

  31. V Uthaisangsuk, U Prahl, and W Bleck, Engineering Fracture Mechanics, Vol. 78, 2011, pp. 469-486.

    Article  Google Scholar 

  32. H J He, N Terao, and A Berghezan, Metal Science, Vol. 18, 1984, pp. 367-373.

    CAS  Google Scholar 

  33. D L Steinbrunner, D K Matlock, and G Krauss, Vol. 19A, 1988, pp. 579-589.

    CAS  Google Scholar 

  34. B S Levy and C J Van Tyne, Journal of Materials Engineering and Performance, Vol. 21, 2012, pp. 1205-1213.

    Article  CAS  Google Scholar 

  35. B S Levy and C J Van Tyne, Journal of Materials Engineering and Performance, Vol. 17, 2008, pp. 842-848.

    Article  CAS  Google Scholar 

  36. S B Lee, J G Speer, D K Matlock, and K G Chin, in Proceedings of the 3 rd International Conference on Advanced Structural Steels, Korean Institute of Metals and Materials, Seoul, Korea, 2006, pp. 841-849.

    Google Scholar 

  37. A Dalloz, J Besson, A F Gourgues-Lorenzon, T Sturel, and A Pineau, Engineering Fracture Mechanics, Vol. 76, 2009, pp. 1411-1424.

    Article  Google Scholar 

  38. Y. Takahashi, O. Kawano, and Y. Tanaka: Proceedings of MS&T, 2009.

  39. M Sudo, S-I Hashimoto and S Kambe, Transactions of ISIJ, Vol. 23, 1983, pp. 303-311.

    Article  Google Scholar 

  40. M Sudo and I Kokubo, Scandinavian Journal of Metallurgy, Vol. 13, 1984, pp. 329-342.

    CAS  Google Scholar 

  41. B S Levy and C J Van Tyne, Journal of Materials Engineering and Performance, Vol. 21, 2012, pp. 2147-2154.

    Article  CAS  Google Scholar 

  42. S. Sriram, C. Wong, M. Huang, B. Yan, and D. Urban: Formability Characterization of a New Generation of High Strength Steels, Report No. 0012, AISI Technology Roadmap Program Office, Pittsburgh, PA, 2003.

  43. A. Koniecyny and T. Henderson: in Steel Innovations, Fatigue Research, Sheet/Hydro/Gas forming Technology and Advanced High Strength Steel Development, SP-2103, SAE International, Warrendale, PA, 2007, pp. 41–50.

  44. S.B. Lee: Ph.D. Dissertation, Colorado School of Mines, Golden, CO, 2005.

  45. X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, Journal of Materials Processing Technology, Vol. 132, 2003, pp. 215-218.

    Article  CAS  Google Scholar 

  46. A Karelova, C Krempaszky, E Werner, P Tsipouridis, T Habedberger, and A Pichler, Steel Research International, Vol. 80, 2009, pp. 71-77.

    CAS  Google Scholar 

  47. N. Fujita, T. Nonaka, T. Tomokiyo, H. Taniguchi, K. Goto, and K. Yamazaka: Proceedings SAE World Congress, Paper No. SAE 2007-01-0341.

  48. RDK Misra, SW Thompson, TA Hylton, AJ Boucek (2001) Metallurgical and Materials Transactions A 12A:745-759.

    Google Scholar 

  49. R G Davies, Metall. Trans. A, vol. 10A, 1979, pp. 113–118.

    CAS  Google Scholar 

  50. C. Chiriac: Steel Processing Products Metallurgy and Applications, Proceedings of MS&T, 2010, pp. 1840–1851.

  51. Standard Test Methods for Determining Grain Size: ASTM International, West Conshohocken, PA, 2000.

  52. Standard Test Methods for Tension Testing of Metallic Materials: ASTM International, West Conshohocken, PA, 2006.

  53. Standard Test Methods for Tension Testing for Plastic Strain Ratio R for Sheet Metal: ASTM International, West Conshohocken, PA, 2010.

  54. ASM Handbook: Mechanical Testing and Evaluation, ASM International, Materials Park, OH, 2000, vol. 8, p. 283.

  55. Z Milosevic, F Moussy (1987) In: K Lange (ed) Advanced Technology of Plasticity, vol. II. Springer, Berlin, pp. 697–702.

    Google Scholar 

  56. G Dieter, Mechanical Metallurgy, 3rd ed., McGraw Hill, New York, NY, 1986, p. 525.

    Google Scholar 

  57. G LeRoy, JD Embury (1978) In: S Hecker, AK Ghosh, HL Gegel (eds) Formability Analysis and Modeling. AIME, New York, NY, pp. 183–207

    Google Scholar 

  58. BS Levy, MJ Gibbs, CJ Van Tyne (2012) In: P. Hora (ed) Proceeding of Forming Technology Forum Zurich 2012Advance Failure Prediction Methods in Sheet Metal Forming. Institute of Virtual Manufacturing, ETH, pp. 121–124.

    Google Scholar 

  59. E C Bain, HW Paxton (1961) Alloying Elements in Steel, 2nd edn. ASM, Metals Park, OH, p. 37.

    Google Scholar 

  60. Thermo-Calc Tcw5.0.2.30: Computer Software. Thermo-Calc Software AB, PC, 2009.

Download references

Acknowledgments

Partial support for the current study from the Advanced Steel Processing and Products Research Center at Colorado School of Mines is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Van Tyne.

Additional information

Manuscript submitted December 11, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, B.S., Gibbs, M. & Van Tyne, C.J. Failure during Sheared Edge Stretching of Dual-Phase Steels. Metall Mater Trans A 44, 3635–3648 (2013). https://doi.org/10.1007/s11661-013-1718-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1718-7

Keywords

Navigation