Skip to main content
Log in

Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-Cu alloys (such as A206) offer high strength and high fracture toughness at both room and elevated temperatures. However, their widespread applications are limited because of their high susceptibility to hot tearing. This article presents a nanotechnology approach to enhance hot-tearing resistance for A206. Specifically, γ-Al2Onanoparticles were used, and their effects on the hot-tearing resistance of the as-cast Al-4.5Cu alloy (A206) were investigated. While it is well known that grain refinement can improve the hot-tearing resistance of cast Al alloys, the current study demonstrated that nanoparticles can be much more effective in the case of A206. The hot-tearing susceptibilities (HTSs) of A206 alloy and its Al2Onanocomposite were evaluated by constrained rod casting (CRC) with a steel mold. Monolithic A206 and M206 (the Ti-free version of A206) alloys with the B contents of 20, 40, and 300 ppm from an Al-5Ti-1B master alloy addition were also cast under the same conditions for comparison. The results showed that with an addition of 1 wt pct γ-Al2Onanoparticles, the extent of hot tearing in A206 alloys was markedly reduced to nearly that of A356, an Al-Si alloy highly resistant to hot tearing. As compared with grain-refined A206 or M206, the hot-tearing resistance of the nanocomposites was significantly better, even though the grain size was not reduced as much. Microstructural analysis suggested that γ-Al2Onanoparticles modified the solidification microstructure of the eutectic of θ-Al2Cu and α-Al, as well as refined primary grains, resulting in the enhancement of the hot-tearing resistance of A206 to a level similar to that of A356 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Kearney and E.L. Rooy (1990) Asmhandbook, vol 2. ASM, Plaines, pp 123–151.

    Google Scholar 

  2. G.K. Sigworth and F. DeHart: AFS Trans., 2003, vol. 111, pp. 341-354.

    CAS  Google Scholar 

  3. S. Lin, C. Aliravci, and N.I.O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1056-1068.

    Article  CAS  Google Scholar 

  4. G.K. Sigworth: AFS Trans., 1996, vol. 104, pp. 1053-1062.

    CAS  Google Scholar 

  5. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1511-1519.

    Article  CAS  Google Scholar 

  6. S. Li, K. Sadayappan, and D. Apelian: Int. J. Cast Metal. Res., 2011, vol. 24, pp. 88-95.

    Article  CAS  Google Scholar 

  7. D.G. Eskin, Suyitno, L. Katgerman (2004) Prog. Mater. Sci. 49:629-711.

    Article  CAS  Google Scholar 

  8. J. Campbell (2003) Castings, 2nd edn. Butterworth Heinemann, Oxford, p. 242.

    Google Scholar 

  9. M.A. Easton, H. Wang, J.F. Grandfield, D.H. StJohn, and E. Sweet: Mater. Forum, 2004, vol. 28, pp. 224-229.

    CAS  Google Scholar 

  10. F. Fasoyinu, J. Thomson, M. Sahoo, P. Burke, and D. Weiss: Modern Casting, 2008, vol. 98, pp. 43-46.

    Google Scholar 

  11. H. Nagaumi, S. Suzuki, T. Okane and T. Umeda: Mater. Trans., 2006, vol. 47, pp. 2821-2827.

    Article  CAS  Google Scholar 

  12. A. Mazahery, H. Abdizadeh, and H.R. Baharvandi: Mater. Sci. Eng. A, 2009, vol. 518, pp. 61-64.

    Article  Google Scholar 

  13. H. Choi, Y. Sun, B. Slater, H. Konishi, and X. L: Adv. Eng. Mater., 2012, vol. 14, pp. 291-295.

    Article  CAS  Google Scholar 

  14. H. Choi, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2012, vol. 541, pp. 159-165.

    Article  CAS  Google Scholar 

  15. J. Lan, Y. Yang, and X.C. Li: Mater. Sci. Eng. A, 2004, vol. 386, pp. 284-290.

    Google Scholar 

  16. G. Cao, H. Choi, J. Oportus, H. Konishi, and X.C. Li: Mater. Sci. Eng. A, 2008, vol. 494, pp. 127-131.

    Article  Google Scholar 

  17. H. Choi, M. Jones, H. Konishi, and X.C. Li: Metall. Mater. Trans. A, 2012, vol. 43, pp. 738-746.

    Article  Google Scholar 

  18. D.Y. Ying and D.L. Zhang: Mater. Sic. Eng. A, 2000, vol. 286, pp. 152-156.

    Article  Google Scholar 

  19. M. Kok: J. Mater. Process. Technol., 2005, vol. 161, pp. 381-387.

    Article  CAS  Google Scholar 

  20. M. De Cicco, L. Turng, X.C. Li, J. Perepezko (2011) Metall. Mater. Trans. A 42:2323-2330.

    Article  Google Scholar 

  21. S. Li and D. Apelian: Int. J. Metalcasting, 2011, vol. 5, pp. 23-40.

    Google Scholar 

  22. R.A. Rosenberg, M.C. Flemings, and H.F. Taylor: Trans. AFS, 1960, vol. 68, pp. 518-528.

    Google Scholar 

  23. G. Cao, C. Zhang, H. Cao, Y.A. Chang, and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 706-716.

    Article  CAS  Google Scholar 

  24. A.L. Kearney, E.L. Rooy (1990) ASM Handbook, ASM, Des Plaines, pp. 152-177.

    Google Scholar 

  25. M.C. Flemings: Solidification Processing, p. 252-256, McGraw-Hill, New York, 1974.

    Google Scholar 

  26. H. Kamguo Kamga, D. Larouche, M. Bournane, A. Rahem (2010) Mater. Sci. Eng. A 527:. 7413-7423.

    Article  Google Scholar 

  27. W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, and Z.D. Zhang: Phys. Stat. Sol. A, 2006, vol. 203, pp. 294-299.

    Article  CAS  Google Scholar 

  28. H. Kaftelen, N. Unlu, G. Goller, M.L. Ovecoglu, and H. Henein: Composites: Part A, 2011, vol. 42, pp. 812-82.

    Article  Google Scholar 

  29. B.L. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-1995.

    Google Scholar 

  30. X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1409-1420.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is sponsored by the National Institute of Standards and Technology (Gaithersburg, MD) through its Technology Innovation Program. The authors also thank Dave Weiss of Eck Industries, Inc. for his support and assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Additional information

Manuscript submitted March 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Cho, Wh., Konishi, H. et al. Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy. Metall Mater Trans A 44, 1897–1907 (2013). https://doi.org/10.1007/s11661-012-1531-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1531-8

Keywords

Navigation