Skip to main content
Log in

As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a rapid manufacturing process that enables the buildup of very complex parts in short delays directly from powder beds. Due to the high laser beam energy during very short interaction times and the high solidification rates of the melting pool, the resulting microstructure is out-of-equilibrium and particularly textured. This type of as-fabricated microstructure may not satisfy the aeronautical criterion and requires post heat treatments. Optimized heat treatments are developed, in one side, to homogenize and form the stable phases α and β while preventing exaggerated grain growth. In the other side, heat treatment is investigated to relieve the thermal stresses appearing during cooling. This study is aimed at presenting the various types of microstructure of the Ti-6Al-4V alloy after postfabrication heat treatments below or above the β transus. Tensile tests are then carried out at room temperature in order to assess the effect of the microstructures on the mechanical properties. The fine as-fabricated microstructure presents high yield and ultimate strengths, whereas the ductility is well below the standard. A strong anisotropy of fracture between the two loading directions is noted, which is attributed to the manufacturing defects. Conventional and optimized heat treatments exhibit high yield and ultimate strengths while the ductility is significantly improved. This is due to a new optimization of the process parameters allowing drastic reduction of the number of defects. These two heat treatments enable now a choice of the morphology of the grains between columnar or equiaxial as a function of the type of loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.N. Levy, R. Schindel, and J.P. Kruth: Manufact. Technol., 2003, vol. 52, pp. 589–609.

    Google Scholar 

  2. M. Rombouts, J.P. Kruth, L. Froyen, and P. Mercelis: Manufact. Technol., 2006, vol. 55, pp. 187–92.

    Google Scholar 

  3. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov: Appl. Surf. Sci., 2009, vol. 225, pp. 5523–27.

    Article  Google Scholar 

  4. T. Vilaro, V. Kottman-Rexerodt, M. Thomas, and C. Colin: Adv. Mater. Res., 2010, vols. 89–91, pp. 586–91.

    Article  Google Scholar 

  5. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers: J. Mater. Process. Technol., 2004, vol. 149, pp. 616–22.

    Article  CAS  Google Scholar 

  6. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process. Technol., 2008, vol. 195, pp. 77–87.

    Article  CAS  Google Scholar 

  7. P.J. Maziasz: Scripta Mater., 1998, vol. 39, pp. 1471–76.

    Article  CAS  Google Scholar 

  8. N.W. Klingbeil, J.L. Beuth, R.K. Chin, and C.H. Amon: Int. J. Mech. Sci., 2002, vol. 44, pp. 57–77.

    Article  Google Scholar 

  9. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: Manufact. Technol., 2004, vol. 53, pp. 195–98.

    Google Scholar 

  10. L.E. Murr, S.A. Quinones, and S.M. Gaytan: J. Mech. Behav. Biomed. Mater., 2009, vol. 2, pp. 20–32.

    Article  CAS  Google Scholar 

  11. S.H. Mok, G. Bi, J. Folkes, I. Pashby, and J. Segal: Surf. Coat. Technol., 2008, vol. 202, pp. 4613–19.

    Article  CAS  Google Scholar 

  12. Y. Combres: Traitements Thermiques des Alliages de Titane, Techniques de l’Ingénieur, M1335, 1995.

  13. I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov: Appl. Surf. Sci., 2007, vol. 254, pp. 980–83.

    Article  CAS  Google Scholar 

  14. J. Maisonneuve: Ph.D. Thesis, ENSMP, Mines ParisTech, Paris, 2008.

  15. X. Wu: J. Eng. Mater. Technol., 2003, vol. 135, pp. 266–70.

    CAS  Google Scholar 

  16. M. Qian, J. Mei, J. Liang, and X. Wu: Mater. Sci. Technol., 2005, vol. 21, pp. 597–605.

    Article  CAS  Google Scholar 

  17. A. Longuet: Ph.D. Thesis, ENSMP, Mines ParisTech, Paris, 2010.

  18. J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 8327–39.

    Article  CAS  Google Scholar 

  19. F. Delannay, D. Pardoen, and C. Colin: Acta Mater., 2005, vol. 53, pp. 1655–64.

    Article  CAS  Google Scholar 

  20. F.X. Gil: J. Alloys Compd., 1996, vol. 234, p. 287.

    Article  Google Scholar 

  21. T. Ahmed and H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 206–11.

    CAS  Google Scholar 

  22. D. Franois, A. Pineau, and A. Zaoui: Comportement Mécanique des Matériaux, Hermès Science Publications, Paris, 2009.

  23. L.T. Lee: Mater. Sci. Eng., 1990, vol. 128, pp. 77–89.

    Article  Google Scholar 

  24. B. Hadj Sassi: Ph.D. Thesis, ENSTA ParisTech, Paris, 1977.

Download references

Acknowledgments

The authors are grateful to Stephane Abed (Poly-Shape) for providing the Ti-6Al-4V material. They acknowledge the ANRT foundation for helping in the funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vilaro.

Additional information

Manuscript submitted August 23, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilaro, T., Colin, C. & Bartout, J.D. As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metall Mater Trans A 42, 3190–3199 (2011). https://doi.org/10.1007/s11661-011-0731-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0731-y

Keywords

Navigation