Skip to main content

Advertisement

Log in

Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ambient- to elevated-temperature fracture and fatigue-crack growth results are presented for five Mo-Mo3Si-Mo5SiB2-containing α-Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the α-Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous α-Mo matrix, it was found that improved fracture and fatigue properties are achieved by promoting the active toughening mechanisms, specifically crack trapping and crack bridging by the α-Mo phase. Crack-initiation fracture toughness values increased from 5 to 12 MPa√m with increasing α-Mo content from 17 to 49 vol pct, and fracture toughness values rose with crack extension, ranging from 8.5 to 21 MPa√m at ambient temperatures. Fatigue thresholds benefited similarly from more α-Mo phase, and the fracture and fatigue resistance was improved for all alloys tested at 1300 °C, the latter effects being attributed to improved ductility of the α-Mo phase at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM, Metals Park, OH, 2002, p. 439.

    Google Scholar 

  2. M.K. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–81.

    Article  CAS  Google Scholar 

  3. M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Heubsch, and B. Cook: Mater. Sci. Eng., 1999, vol. A261, pp. 16–23.

    CAS  Google Scholar 

  4. M.K. Meyer and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2763–66.

    Article  CAS  Google Scholar 

  5. M.K. Meyer, A.J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153–62.

    Article  CAS  Google Scholar 

  6. D.M. Berczik: United Technologies Corporation, East Hartford, CT, U.S. Patent 5,595,616, 1997.

  7. D.M. Berczik: United Technologies Corporation, East Hartford, CT, U.S. Patent 5,693,156, 1997.

  8. H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.

    Article  CAS  Google Scholar 

  9. H. Choe, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 25–239.

    Google Scholar 

  10. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Scripta Mater., 2004, vol. 50, pp. 459–64.

    Article  CAS  Google Scholar 

  11. J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 525–31.

    CAS  Google Scholar 

  12. J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scripta Mater., 2002, vol. 46, pp. 217–21.

    Article  CAS  Google Scholar 

  13. ASTM E561-98: Annual Book of ASTM Standards, vol. 03.01, Metals-Mechanical Testing; Elevated and Low-Temperature Tests; Metallography, ASTM, West Conshohocken, PA, 2002, pp. 534–46.

  14. C.J. Gilbert, J.M. McNaney, R.H. Dauskardt, and R.O. Ritchie: J. Testing Eval., 1994, vol. 22, pp. 117–20.

    Google Scholar 

  15. D. Chen, C.J. Gilbert, and R.O. Ritchie: J. Testing Eval., 2000, vol. 28, pp. 236–41.

    CAS  Google Scholar 

  16. ASTM E647-00: Annual Book of ASTM Standards, vol. 03.01, Metals-Mechanical Testing: Elevated and Low-temperature Tests; Metallography, ASTM, West Conshohocken, PA, 2002, pp. 595–635.

  17. D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, vol. 28, pp. 639–45.

    CAS  Google Scholar 

  18. K.T. Venkateswara Rao, W.O. Soboyejo, and R.O. Ritchie: Metall. Trans. A, 1992, vol. 23A, pp. 2249–57.

    CAS  Google Scholar 

  19. I. Rosales and J.H. Schneibel: Intermetallics, 2000, vol. 8, pp. 885–89.

    Article  CAS  Google Scholar 

  20. C.F. Shih: J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.

    Article  Google Scholar 

  21. A. Buch: Pure Metals Properties: a Scientific-Technical Handbook, ASM INTERNATIONAL, Materials Park, OH, 1999, p. 306.

    Google Scholar 

  22. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.

    Article  CAS  Google Scholar 

  23. J.G. Swadener, I. Rosales, and J.H. Schneibel: in High-Temperature Ordered Intermetallic Alloys IX, J.H. Schneibel, S. Hanada, K.J. Hemker, R.D. Noebe, and G. Sauthoff, eds., Materials Research Society, Warrendale, PA, 2001, pp. N4.2.1-N4.2.6.

    Google Scholar 

  24. R.O. Ritchie: Int. J. Fract., 1999, vol. 100, pp. 55–83.

    Article  CAS  Google Scholar 

  25. J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng., 1999, vol. A261, pp. 78–83.

    CAS  Google Scholar 

  26. J.H. Schneibel, P.F. Tortorelli, M.J. Kramer, A.J. Thom, J.J. Kruzic, and R.O. Ritchie: in Defect Properties and Related Phenomena in Intermetallic Alloys, E.P. George, M.J. Mills, H. Inui, and G. Eggeler, eds., Materials Research Society, Warrendale, PA, 2003, pp. 53–58.

    Google Scholar 

  27. V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng., 2003, vol. A344, pp. 328–39.

    CAS  Google Scholar 

  28. J.H. Schneibel: Intermetallics, 2003, vol. 11, pp. 625–32.

    Article  CAS  Google Scholar 

  29. A. Kumar and B.L. Eyre: Proc. R. Soc. London A, 1980, vol. 370, pp. 431–58.

    Article  CAS  Google Scholar 

  30. J. Wadsworth, T.G. Nieh, and J.J. Stephens: Scripta Mater., 1986, vol. 20, pp. 637–42.

    Article  CAS  Google Scholar 

  31. N.E. Promisel: The Science and Technology of Tungsten, Tantalum, Molybdenum, Niobium and Their Alloys, Pergamon Press, The MacMillan Company, New York, NY, 1964, p. 588.

    Google Scholar 

  32. L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans: Acta Metall., 1988, vol. 36, pp. 945–53.

    Article  CAS  Google Scholar 

  33. M.F. Ashby, F.J. Blunt, and M. Bannister: Acta Metall., 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  34. B.D. Flinn, M. Rühle, and A.G. Evans: Acta Metall., 1989, vol. 37, pp. 3001–06.

    Article  CAS  Google Scholar 

  35. D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2483–96.

    Article  CAS  Google Scholar 

  36. J.P. Campbell, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 563–77.

    Article  CAS  Google Scholar 

  37. R.W. Steinbrech, A. Reichl, and W. Schaarwächter: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2009–15.

    Article  CAS  Google Scholar 

  38. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 29, pp. 646–53.

    Google Scholar 

  39. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801–08.

    Article  CAS  Google Scholar 

  40. J.D. Rigney and J.J. Lewandowski: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3292–306.

    CAS  Google Scholar 

  41. W.A. Zinsser, Jr. and J.J. Lewandowski: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1749–57.

    Article  CAS  Google Scholar 

  42. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1833–49.

    CAS  Google Scholar 

  43. C.J. Gilbert, J.J. Cao, W.J. Moberly Chan, L.C. De Jonghe, and R.O. Ritchie: Acta Metall. Mater., 1996, vol. 44, pp. 3199–214.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruzic, J.J., Schneibel, J.H. & Ritchie, R.O. Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure. Metall Mater Trans A 36, 2393–2402 (2005). https://doi.org/10.1007/s11661-005-0112-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0112-5

Keywords

Navigation