Skip to main content
Log in

Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Compared with herbal drugs, medicine processed from animals (animal medicine) was thought to have more bioactive substances and higher activities. Biotransformation effect often plays an important role in their effect. However, researches about effect of animal medicine on diabetic nephropathy and applying animal medicine as natural bio-transformer were seldom reported. The purpose of this paper was to reveal the use of Bombyx Mori L. on diabetic nephropathy from ancient to modern times. The classical literature indicated that Saosi Decoction (缫丝汤), which contains Bombyx Mori L. or silkworm cocoon, was applied to treat disorders congruent with modern disease diabetic nephropathy from the Ming to Qing Dynasty in ancient China. Modern studies showed that Bombyx Mori L. contains four main active constituents. Among these, 1-deoxynojirimycin (1-DNJ) and quercetin showed promising potential to be new agents in diabetic nephropathy treatment. The concentrations of 1-DNJ and the activities of quercetin in Bombyx Mori L. are higher than in mulberry leaves, because of the biotransformation in the Bombyx Mori L. body. However, these specifific components need further human and mechanistic studies to determine their therapeutic potential for this challenging condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reutens AT, Atkins RC. Epidemiology of diabetic nephropathy. Contrib Nephrol 2011;170:1–7.

    Article  PubMed  Google Scholar 

  2. Li M, Wang W, Xue J, Gu Y, Lin S. Meta-analysis of the clinical value of Astragalus membranaceus in diabetic nephropathy. J Ethnopharmacol 2011;133:412–419.

    Article  PubMed  Google Scholar 

  3. Zhang L, Mao W, Guo X, Wu Y, Li C, Lu Z, et al. Ginkgo biloba extract for patients with early diabetic nephropathy: a systematic review. Evid Based Complement Altern Med 2013;2013:689142.

    Google Scholar 

  4. Wang B, Ni Q, Wang X, Lin L. Meta-analysis of the clinical effect of ligustrazine on diabetic nephropathy. Am J Chin Med 2012;40:25–37.

    Article  PubMed  Google Scholar 

  5. Lu YH, ed. Biotransformation of natural medicine. Beijing: Chemical Industry Press; 2006.

  6. Bai R. Present situation of biotransformation and biosynthesis in the research of bioactive compounds. Anhui Med Pharm J (Chin) 2010;14:1383–1386.

    Google Scholar 

  7. Zhang YH, Zhang DH, Zhang HJ. Introduction of the application of biological transformation in Chinese medicine active ingredients research. Heilongjiang Med J (Chin) 2010;23:222–224.

    Google Scholar 

  8. Wang XY, Wang QY, Zhao XH, Li JF, Zhang XZ, Zhang JM. Evaluation of the effect of Hirudin and lumbricus injection on hemorrheology in diabetic nephropathy. Chin J Integr Tradit West Nephrol (Chin) 2002;1:47.

    Google Scholar 

  9. Bi LM, Ma JP. Application of traditional medicine of worm in diabetic nephrology. J Tradit Chin Med (Chin) 2010;51:1051–1053.

    Google Scholar 

  10. Shi W, Huang LW, Tang AH, Zhang ML. Explore about the mechanism of Lumbricus Injection on diabetic nephropathy. Shanxi J Tradit Chin Med (Chin) 2001;6:53–54.

    Google Scholar 

  11. Chen GF, Luo XR, Zhen HY, Wu HY, Zhang HB. Clinical observation of the effect of Lumbricus Capsules on diabetic nephropathy. J Kunming Med Univ (Chin) 2011;2:24–26.

    Google Scholar 

  12. Ma YC, Zhou B, Song LQ, Song YX. Clinical observation of the effect of lumbricus agent EFE on diabetic nephropathy. Inform Tradit Chin Med (Chin) 2011;28:48–49.

    Google Scholar 

  13. Ge N, Li SM, Sun HL, Shao MM, Chen XY, Xiong GL, et al. Research on the renal protective effect on diabetic nephropathy rats. Shanghai J Tradit Chin Med (Chin) 2010;44:103–105.

    Google Scholar 

  14. Zhang L, Li Y, Guo X, May BH, Xue CL, Yang L, et al. Text mining the classical medical literature for medicines that show potential in diabetic nephropathy. Evid Based Complment Altern Med 2014;2014:189125.

    Google Scholar 

  15. Hu R, Qiu PR, eds. Encyclopaedia of traditional Chinese medicine. 4th ed. [in Chinese; on CD only]. Changsha: Hunan Electronic and Audio-Visual Publishing House; 2006.

    Google Scholar 

  16. Zhou GX, Ruan JW, Huang MY, Ye WC, He YW. Alkaloid constituents from silkworm droppings of Bombyx Mori. J Chin Med Mater (Chin) 2007;30:1384–1385.

    CAS  Google Scholar 

  17. Campbell LK, Baker DE, Campbell RK. Miglitol: assessment of its role in the treatment of patients with diabetes mellitus. Ann Pharmacother 2000;34:1291–1301.

    Article  CAS  PubMed  Google Scholar 

  18. Yokoyama H, Kannno S, Ishimura I, Node K. Miglitol increases the adiponectin level and decreases urinary albumin excretion in patients with type 2 diabetes mellitus. Metabolism 2007;56:1458–1463.

    Article  CAS  PubMed  Google Scholar 

  19. Kong WH, Oh SH, Ahn YR, Kim KW, Kim JH, Seo SW. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J Agric Food Chem 2008;56:2613–2619.

    Article  CAS  PubMed  Google Scholar 

  20. Du P, Fan B, Han H, Zhen J, Shang J, Wang X, et al. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 2013;84:265–76.

    Article  CAS  PubMed  Google Scholar 

  21. Uzu T, Yokoyama H, Itoh H, Koya D, Nakagawa A, Nishizawa M, et al. Elevated serum levels of interleukin-18 in patients with overt diabetic nephropathy: effects of miglitol. Clin Exp Nephrol 2011;15:58–63.

    Article  CAS  PubMed  Google Scholar 

  22. Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin Kanasaki M, et al. Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia 2007;50:867–73.

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2diabetes. Diabetes Care 2005;28:2890–2895.

    Article  CAS  PubMed  Google Scholar 

  24. Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, et al. Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol 2012;49: 111–117.

    Article  CAS  PubMed  Google Scholar 

  25. Stuyt RJ, Netea MG, Geijtenbeek TB, Kullberg BJ, Dinarello CA, van der Meer JW. Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes. Immunology 2003;110:329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, et al. Cloning of a new cytokine that induces IFN-k production by T cells. Nature 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  27. Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor a and interleukin-1ß production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis. Arthritis Rheum 2004;50:432–443.

    Article  CAS  PubMed  Google Scholar 

  28. Mariño E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-a and Fas (CD95). Cytokine 2003;22:142–148.

    Article  PubMed  Google Scholar 

  29. Hasegawa G, Nakano K, Sawada M, Uno K, Shibayama Y, Ienaga K, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int 1991;40:1007–1012.

    Article  CAS  PubMed  Google Scholar 

  30. Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013;4:7.

    Google Scholar 

  31. Dalla Vestra M, Mussap M, Gallina P, Bruseghin M, Cernigoi AM, Saller A, et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol 2005;16:S78–S82.

    Article  PubMed  Google Scholar 

  32. Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm 2012;2012:146154.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 2013;124:139–52.

    Article  CAS  Google Scholar 

  34. Uzu T, Yokoyama H, Itoh H, Koya D, Nakagawa A, Nishizawa M, et al. Elevated serum levels of interleukin-18 in patients with overt diabetic nephropathy: effects of miglitol. Clin Exp Nephrol 2011;15:58–63.

    Article  CAS  PubMed  Google Scholar 

  35. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, et al. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx Mori L.). J Agric Food Chemi 2001;49:4208–4213.

    Article  CAS  Google Scholar 

  36. Taniguchi S, Asano N, Tomino F, Miwa I. Potentiation of glucose-induced insulin secretion by fagomine, a pseudosugar isolated from mulberry leaves. Horm Metab Res 1998;30:679–683.

    Article  CAS  PubMed  Google Scholar 

  37. Wang HY, Wang YJ, Zhou LX, Zhu L, Zhang YQ. Isolation and bioactivities of a non-sericin component from cocoon shell silk sericin of the silkworm Bombyx Mori. Food Funct 2012;3:150–158.

    Article  CAS  PubMed  Google Scholar 

  38. Hirayama C, Ono H, Tamura Y, Nakamura M. C-prolinylquercetins from the yellow cocoon shell of the silkworm, Bombyx Mori. Phytochemistry 2006;67:579–583.

    Article  CAS  PubMed  Google Scholar 

  39. Hirayama C, Ono H, Tamura Y, Konno K, Nakamura M. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx Mori. Phytochemistry 2008;69:1141–1149.

    Article  CAS  PubMed  Google Scholar 

  40. Kurioka A, Yamazaki M. Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx Mori. Biosci Biotechnol Biochem 2002;66:1396–1399.

    Article  CAS  PubMed  Google Scholar 

  41. Tamura Y, Nakajima K, Nagayasu K, Takabayashi C. 5-glucosides from the cocoon shell of the silkworm, Bombyx Mori. Phytochemistry 2002;59:275–278.

    Article  CAS  PubMed  Google Scholar 

  42. Tang DQ, Wei YQ, Yin XX, Lu Q, Hao HH, Zhai YP, et al. In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 2011; 82:920–926.

    Article  CAS  PubMed  Google Scholar 

  43. Lai PB, Zhang L, Yang LY. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-beta 1 and connective tissue growth factor in streptozotocin-induced diabetic rats. Ren Fail 2012;34:83–87.

    Article  CAS  PubMed  Google Scholar 

  44. Babujanarthanam R, Kavitha P, Mahadeva Rao US, Pandian MR. Quercetin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues. Mol Cell Biochem 2011;358:121–129.

    Article  CAS  PubMed  Google Scholar 

  45. Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004;31:244–248.

    Article  CAS  PubMed  Google Scholar 

  46. Ziyadeh F, Han DC. Involvement of transforming growth factor-beta and its receptors in the pathogenesis of diabetic nephropathy. Kidney Int Suppt 1997;60:S7–S11.

    CAS  Google Scholar 

  47. Chen P, Chen JB, Chen WY, Zheng QL, Wang YQ, Xu XJ. Effects of quercetin on nuclear factor-kB p65 expression in renal ubiquitin-proteasome system of diabetic rats. Chin J Intern Med (Chin) 2012;51:460–465.

    CAS  Google Scholar 

  48. Chen P, Shi Q, Xu X, Wang Y, Chen W, Wang H. Quercetin suppresses NF-kB and MCP-1 expression in a high glucose-induced human mesangial cell proliferation model. Int J Mol Med 2012;30:119–125.

    PubMed  Google Scholar 

  49. Hyun CK, Kim IY, Frost SC. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 fibroblasts. J Nutr 2004;134:3257–3263.

    CAS  PubMed  Google Scholar 

  50. Gao J, Bai J, Man Q, Liu G. Effects of silk hydrates on the blood glucose metabolism in rats with experimental diabetes. J Hygiene Res (Chin) 2000; 29:223–225.

    CAS  Google Scholar 

  51. Jung EY, Lee HS, Lee HJ, Kim JM, Lee KW, Suh HJ. Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutr Res 2010;30:783–790.

    Article  CAS  PubMed  Google Scholar 

  52. Park JH, Nam Y, Park SY, Kim JK, Choe NH, Lee JY, et al. Silk fibroin has a protective effect against high glucose induced apoptosis in HIT-T15 cells. J Biochem Mol Toxicol 2011;25:238–243.

    Article  CAS  PubMed  Google Scholar 

  53. Lee HS, Lee HJ, Suh HJ. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast. Nutr Res 2011;31:937–943.

    Article  CAS  PubMed  Google Scholar 

  54. Kim DW, Hwang HS, Kim DS, Sheen SH, Heo DH, Hwang G, et al. Effect of silk fibroin peptide derived from silkworm Bombyx Mori on the anti-inflammatory effect of Tat-SOD in amice edema model. BMB Rep 2011;44:787–792.

    Article  CAS  PubMed  Google Scholar 

  55. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 2007;55:5869–5874.

    Article  CAS  PubMed  Google Scholar 

  56. Asano N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 2003;13:93R–104R.

    Article  CAS  PubMed  Google Scholar 

  57. Nakagawa K, Ogawa K, Higuchi O, Kimura T, Miyazawa T, Hori M. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatographytandem mass spectrometry. Anal Biochem 2010;404:217–222.

    Article  CAS  PubMed  Google Scholar 

  58. Konno K, Ono H, Nakamura M, Tateishi K, Hirayama C, Tamura Y, et al. Mulberry latex rich in antidiabetic sugarmimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci USA 2006;103:1337–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirayama C, Konno K, Wasano N, Nakamura M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx Mori to mulberry defense. Insect Biochem Mol Biol 2007;37:1348–1358.

    Article  CAS  PubMed  Google Scholar 

  60. Daimon T, Hirayama C, Kanai M, Ruike Y, Meng Y, Kosegawa E, et al. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Proc Natl Acad Sci USA 2010;107:11471–11476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Zha XM, et al. Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo. J Biomed Mater Res B Appl Biomater 2006;79:275–283.

    Article  PubMed  Google Scholar 

  62. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Xue RY. Silk sericin-insulin bioconjugates: synthesis, characterization and biological activity. J Control Release 2006;115:307–315.

    Article  CAS  PubMed  Google Scholar 

  63. Meng Q, Wang W, Shi X, Jin Y, Zhang Y. Protection against autoimmune diabetes by silkworm-produced GFP-tagged CTB-insulin fusion protein. Clin Dev Immunol 2011;831704.

    Google Scholar 

  64. Gong ZH, Jin HQ, Jin YF, Zhang YZ. Expression of cholera toxin B subunit and assembly as functional oligomers in silkworm. J Biochem Mol Biol 2005;38:717–724.

    Article  CAS  PubMed  Google Scholar 

  65. Gong Z, Jin Y, Zhang Y. Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes. J Biotechnol 2005;119:93–105.

    Article  CAS  PubMed  Google Scholar 

  66. Gong Z, Jin Y, Zhang Y. Suppression of diabetes in nonobese diabetic (NOD) mice by oral administration of a cholera toxin B subunit-insulin B chain fusion protein vaccine produced in silkworm. Vaccine 2007;25:1444–1451.

    Article  CAS  PubMed  Google Scholar 

  67. Geng P, Yang Y, Gao Z, Yu Y, Shi Q, Bai G. Combined effect of total alkaloids from Feculae Bombycis and natural flavonoids on diabetes. J Pharm Pharmacol 2007;59:1145–1150.

    Article  CAS  PubMed  Google Scholar 

  68. Lin JS. The phase I clinical trial of the effect of Jintangning Capsule on type 2 diabetes mellitus. Strait Pharm J (Chin) 2008;20:106–109.

    Google Scholar 

  69. Vichasilp C, Nakagawa K, Sookwong P, Suzuki Y, Kimura F, Higuchi O, et al. Optimization of 1-deoxynojirimycin extraction from mulberry leaves by using response surface methodology. Biosci Biotechnol Biochem 2009;73:2684–2689.

    Article  CAS  PubMed  Google Scholar 

  70. Miyahara C, Miyazawa M, Satoh S, Sakai A, Mizusaki S. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. J Nutr Sci Vitaminol (Toyko) 2004;50:161–164.

    Article  CAS  Google Scholar 

  71. Faber ED, Oosting R, Neefjes JJ, Ploegh HL, Meijer DK. Distribution and elimination of the glycosidase inhibitors 1-deoxymannojirimycin and N-methyl-1-deoxynojirimycin in the rat in vivo. Pharm Res 1992;9:1442–1450.

    Article  CAS  PubMed  Google Scholar 

  72. Weisburer JH. Approaches for chronic disease prevention based on current understanding of underlying mechanisms. Am J Clin Nutr 2000;71(6 Suppl):1710S–1714S; discussion 1715S-1719S.

    Google Scholar 

  73. Ramachandra R, Shetty AK, Salimath PV. Quercetin alleviates activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats. Mol Nutr Food Res 2005;49:355–360.

    Article  CAS  PubMed  Google Scholar 

  74. Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, et al. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999;48:1638–1644.

    Article  CAS  PubMed  Google Scholar 

  75. Andallu B, Kumar AV, Varadacharyulu NC. Oxidative stress in streptozocin-diabetic rats: amelioration by mulberry (Morus Indica L.) leaves. Chin J Integr Med 2012 Dec 22. [Epub ahead of print].

    Google Scholar 

  76. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M. New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem Pharm Bull (Tokyo) 1995;43:284–288.

    Article  CAS  Google Scholar 

  77. Berfield AK, Andress DL, Abrass CK. IGF-1-induced lipid accumulation impairs mesangial cell migration and contractile function. Kidney Int 2002;62:1229–1237.

    Article  CAS  PubMed  Google Scholar 

  78. Isshiki K, He Z, Maeno Y, Ma RC, Yasuda Y, Kuroki T, et al. Insulin regulates SOCS2 expression and the mitogenic effect of IGF-1 in mesangial cells. Kidney Int 2008;74:1434–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh LP, Jiang Y, Cheng DW. Proteomic identification of 14-3-3zeta as an adapter for IGF-1 and Akt/GSK-3beta signaling and survival of renal mesangial cells. Int J Biol Sci 2006;3:27–39.

    PubMed  PubMed Central  Google Scholar 

  80. Levin-Iaina N, Iaina A, Raz I. The emerging role of NO and IGF-1 in early renal hypertrophy in STZ-induced diabetic rats. Diabetes Metab Res Rev 2011;27:235–243.

    Article  CAS  PubMed  Google Scholar 

  81. Leon CA, Raij L. Interaction of haemodynamic and metabolic pathways in the genesis of diabetic nephropathy. J Hypertens 2005;23:1931–1937.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-feng Guo  (郭新峰) or Xu-sheng Liu  (刘旭生).

Additional information

Supported by the Industry Special Scientific Research Project of the State Chinese Medicine Administration Bureau (No. 201007005 and No. 201407005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, L., Li, Y. et al. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy. Chin. J. Integr. Med. 22, 872–879 (2016). https://doi.org/10.1007/s11655-015-2128-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2128-z

Keywords

Navigation