Skip to main content
Log in

Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

d :

cold exit diameter (mm)

D :

inner diameter of vortex tube (mm)

L :

length of vortex tube (mm)

:

mass flow rate (kg/s)

p :

static pressure (Pa)

p i :

Pitot pressure (Pa)

T :

temperature (K)

ΔT :

temperature difference (K)

x :

distance from cold exit on centerline (mm)

ɛ :

cold fraction

cold :

cold flow

in :

flow supplied into VT

s :

stagnation point

t :

total temperature

References

  1. Eiamsa-ard S., Promvonge P.. Review of Ranque-Hilsch Effects in Vortex Tubes, Renewable and Sustainable Energy Reviews, vol. 12, pp.1822–1842, (2008).

    Article  Google Scholar 

  2. Ranque G. J.. Experiences Sur la Detente Giratoire Avec Productions Simultanees d’un Echappement d’Air Chaud et d’un Echappement d’Air Froid, Journal de Physique et Le Radium, vol.4, pp.112–114, (1933).

    Google Scholar 

  3. Hilsch R.. The Use of Expansion of Gases in a Centrifugal Field as Cooling Process, The Review of Scientific Instruments, vol.18, pp.108–113, (1947).

    Article  ADS  Google Scholar 

  4. Linderstrom-Lang C.U.. The Three-Dimensional Distributions of Tangential Velocity and Total-Temperature in Vortex Tubes, Journal of Fluid Mechanics, vol.45, pp.161–187, (1971).

    Article  ADS  Google Scholar 

  5. Alimov R.Z.. Flow Friction and Heat and Mass Transfer in a Swirled Flow, Journal of Engineering Physcs, Thermophys., vol.10, pp.251–257, (1966).

    ADS  Google Scholar 

  6. Aydin O., Markal B.. A New Vortex Generator Geometry for a Counter-Flow Ranque-Hilsch Vortex Tube, Applied Thermal Engineering, vol.30, pp.2505–2510, (2010).

    Article  Google Scholar 

  7. Markal B., Aydin O., Avci M.. An Experimental Study on the Effect of the Valve Angle of Counter-Flow Ranque-Hilsch Vortex Tubes on Thermal Energy Separation, Experimental Thermal and Fluid Science, vol.34, pp.966–971, (2010).

    Article  Google Scholar 

  8. Avci M.. The Effects of Nozzle Aspect Ratio and Nozzle Number on the Performance of the Ranque-Hilsch Vortex Tube, Applied Thermal Engineering, vol.50, pp.302–308, (2013).

    Article  Google Scholar 

  9. Nimbalkar S. C., Muller M. R.. An Experimental Investigation of the Optimum Geometry for the Cold End Orifice of a Vortex Tube, Applied Thermal Engineering, vol.29, pp.509–514, (2009).

    Article  Google Scholar 

  10. Wu Y. T., Ding Y., Ji Y. B., Ma C. F., Ge M. C.. Modification and Experimental Research on Vortex Tube, International Journal of Refrigeration, vol.30, pp.1042–1049, (2007).

    Article  Google Scholar 

  11. Xue Y., Arjomandi M., Kelso R.. Experimental Study of the Flow Structure in Counter Flow Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer, vol.55, pp.5853–5860, (2012).

    Article  Google Scholar 

  12. Behera U., Paul P. J., Dinesh K., Jacob S.. Numerical Investigations on Flow Behaviour and Energy Separation in Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer, vol.51, pp.6077–6089, (2008).

    Article  MATH  Google Scholar 

  13. Mohammed Ameri, Behrooz Behnia. The Study of Key Design Parameters Effects on the Vortex Tube Performance, Journal of Thermal Science, vol.18, pp.370–376, (2009).

    Article  ADS  Google Scholar 

  14. Dutta T., Sinhamahapatra K.P., Bandyopadhyay S.S.. Numerical Investigation of Gas Species and Energy Separation in the Ranque-Hilsch Vortex Tube using Real Gas Model, International Journal of Refrigeration, vol.34, pp.2118–2128, (2011).

    Article  Google Scholar 

  15. Katanoda H., Mohd Hazwan bin Yusof. Energy Separation Mechanism in Uni-Flow Vortex Tube using Compressible Vortex Flow, Proceedings of International Conference on Fluid Mechanics, Heat Transfer and Thermodynamics 2014, Istanbul, Turkey, pp.1252–1255 (2014).

    Google Scholar 

  16. Gore R.W., Ranz W. E.. Backflow in Rotating Fluids Moving Axially Through Expanding Cross Section, AlChE Journal, vol.10, pp.83–88, (1964).

    Article  Google Scholar 

  17. Wilkinson J., Motamed-Amini A., Owen I.. Compressible and Confined Vortex Flow, International Journal of Heat and Fluid Flow, vol.9, pp.373–380, (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusof, M.H.b., Katanoda, H. & Morita, H. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow. J. Therm. Sci. 24, 67–72 (2015). https://doi.org/10.1007/s11630-015-0757-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-015-0757-3

Keywords

Navigation