Skip to main content

Advertisement

Log in

Therapeutic impact of 18F-FDG PET/CT in recurrent differentiated thyroid carcinoma

  • Head and Neck Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

18F-fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT) has proved effective in detecting recurrent or metastatic differentiated thyroid carcinoma (DTC) in the follow-up of operated DTC patients with high thyroglobulin (Tg) levels and negative findings on radioiodine whole-body scan. The aim of this retrospective study was to assess the impact of PET/CT on the planning of appropriate treatment for known recurrent disease in operated DTC patients.

Materials and methods

The study concerned 44 consecutive DTC patients (36 papillary, 8 follicular), who underwent total thyroidectomy and thyroid remnant ablation with 131I and PET/CT. All patients had proven or strongly suspected recurrent disease judging from neck ultrasound (US) and fine-needle aspiration cytology, and detectable basal Tg levels.

Results

PET/CT findings were positive in 25/44 patients (56.81 %) and negative in 19. A positive PET/CT result predicted resectable tumour recurrences in 19/25 patients, but also detected additional tumour sites that prompted changes to the treatment plan in 6/25 patients (24 %). A negative PET/CT result led to clinical monitoring for 11/19 patients (57.89 %).

Conclusions

PET/CT can help select patients, who might benefit from a tailored therapy by improving the detection of local recurrences not apparent on neck US or metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Google Scholar 

  2. Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338:297–306

    Article  CAS  PubMed  Google Scholar 

  3. Mazzaferri EL, Kloos RT (2001) Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 86:1447–1463

    Article  CAS  PubMed  Google Scholar 

  4. Hay ID, McConahey WM, Goellner JR (2002) Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic’s experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc 113:241–260

    PubMed Central  PubMed  Google Scholar 

  5. Pace L, Klain M, Albanese C et al (2006) Short-term outcome of differentiated thyroid cancer patients receiving a second iodine-131 therapy on the basis of a detectable serum thyroglobulin level after initial treatment. Eur J Nucl Med Mol Imaging 33:179–183

    Article  CAS  PubMed  Google Scholar 

  6. Watkinson JC, Franklyn JA, Olliff JF (2006) Detection and surgical treatment of cervical lymph nodes in differentiated thyroid cancer. Thyroid 16:187–194

    Article  PubMed  Google Scholar 

  7. Mazzaferri EL, Robbins RJ, Spencer CA et al (2003) A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 88:1433–1441

    Article  CAS  PubMed  Google Scholar 

  8. Schlumberger M, Berg G, Cohen O et al (2004) Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol 150:105–112

    Article  CAS  PubMed  Google Scholar 

  9. Bachelot A, Leboulleux S, Baudin E et al (2005) Neck recurrence from thyroid carcinoma: serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment. Clin Endocrinol (Oxf) 62:376–379

    Article  Google Scholar 

  10. Torlontano M, Crocetti U, Augello G et al (2006) Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab 91:60–63

    Article  CAS  PubMed  Google Scholar 

  11. Caleo O, Maurea S, Klain M et al (2008) Postsurgical diagnostic evaluation of patients with differentiated thyroid carcinoma: comparison of ultrasound, iodine-131 scintigraphy and PET with fluorine-18 fluorodeoxyglucose. Radiol Med 113:278–288

    Article  CAS  PubMed  Google Scholar 

  12. Pacini F, Molinaro E, Castagna MG et al (2003) Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 88:3668–3673

    Article  CAS  PubMed  Google Scholar 

  13. Krishnamurthy S, Bedi DG, Caraway NP (2001) Ultrasound-guided fine-needle aspiration biopsy of the thyroid bed. Cancer 93:199–205

    Article  CAS  PubMed  Google Scholar 

  14. Filesi M, Signore A, Ventroni G, Melacrinis FF, Ronga G (1998) Role of initial iodine-131 whole-body scan and serum thyroglobulin in differentiated thyroid carcinoma metastases. J Nucl Med 39:1542–1546

    CAS  PubMed  Google Scholar 

  15. Frilling A, Tecklenborg K, Görges R, Weber F, Clausen M, Broelsch EC (2001) Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 234:804–811

    Article  CAS  PubMed  Google Scholar 

  16. Helal BO, Merlet P, Toubert ME et al (2001) Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 42:1464–1469

    CAS  PubMed  Google Scholar 

  17. Pacini F, Agate L, Elisei R et al (2001) Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab 86:4092–4097

    Article  CAS  PubMed  Google Scholar 

  18. Palmedo H, Bucerius J, Joe A et al (2006) Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 47:616–624

    PubMed  Google Scholar 

  19. Freudenberg LS, Frilling A, Kühl H et al (2007) Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer. Eur Radiol 17:3139–3147

    Article  PubMed  Google Scholar 

  20. Iagaru A, Kalinyak JE, McDougall IR (2007) F-18 FDG PET/CT in the management of thyroid cancer. Clin Nucl Med 32:690–695

    Article  PubMed  Google Scholar 

  21. Mirallié E, Guillan T, Bridji B et al (2007) Therapeutic impact of 18FDG-PET/CT in the management of iodine-negative recurrence of differentiated thyroid carcinoma. Surgery 142:952–958

    Article  PubMed  Google Scholar 

  22. Shammas A, Degirmenci B, Mountz JM et al (2007) 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 48:221–226

    CAS  PubMed  Google Scholar 

  23. Salvatore B, Paone G, Klain M et al (2008) Fluorodeoxyglucose PET/CT in patients with differentiated thyroid cancer and elevated thyroglobulin after total thyroidectomy and (131)I ablation. Q J Nucl Med Mol Imaging 52:2–8

    CAS  PubMed  Google Scholar 

  24. Bertagna F, Bosio G, Biasiotto G et al (2009) F-18 FDG-PET/CT evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clin Nucl Med 34:756–761

    Article  PubMed  Google Scholar 

  25. Leboulleux S, Schroeder PR, Busaidy NL et al (2009) Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 94:1310–1316

    Article  CAS  PubMed  Google Scholar 

  26. Kaneko K, Abe K, Baba S et al (2010) Detection of residual lymph node metastases in high-risk papillary thyroid cancer patients receiving adjuvant I-131 therapy: the usefulness of F-18 FDG PET/CT. Clin Nucl Med 35:6–11

    Article  PubMed  Google Scholar 

  27. Seo JH, Lee SW, Ahn BC, Lee J (2010) Recurrence detection in differentiated thyroid cancer patients with elevated serum level of antithyroglobulin antibody: special emphasis on using (18)F-FDG PET/CT. Clin Endocrinol (Oxf) 72:558–563

    Article  CAS  Google Scholar 

  28. Vera P, Kuhn-Lansoy C, Edet-Sanson A et al (2010) Does recombinant human thyrotropin-stimulated positron emission tomography with [18F]fluoro-2-deoxy-d-glucose improve detection of recurrence of well differentiated thyroid carcinoma in patients with low serum thyroglobulin? Thyroid 20:15–23

    Article  CAS  PubMed  Google Scholar 

  29. Abraham T, Schöder H (2011) Thyroid cancer—indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 41:121–138

    Article  PubMed  Google Scholar 

  30. American Joint Committee on Cancer (2002) In: Greene FL, Page DL, Fleming ID et al (eds) Thyroid Cancer, 6th edn. Springer, New York, pp 89–98

  31. Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  PubMed Central  PubMed  Google Scholar 

  32. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R (2003) Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer 97:90–96

    Article  PubMed  Google Scholar 

  33. Piccardo A, Foppiani L, Morbelli S et al (2011) Could [18]F-fluorodeoxyglucose PET/CT change the therapeutic management of stage IV thyroid cancer with positive (131)I whole body scan? Q J Nucl Med Mol Imaging 55:57–65

    CAS  PubMed  Google Scholar 

  34. Bannas P, Derlin T, Groth M et al (2012) Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med 26:77–85

    Article  CAS  PubMed  Google Scholar 

  35. Na SJ, Yoo IeR, O JH et al (2012) Diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in differentiated thyroid cancer patients with elevated thyroglobulin and negative (131)I whole body scan: evaluation by thyroglobulin level. Ann Nucl Med 26:26–34

    Article  PubMed  Google Scholar 

  36. Feine U, Lietzenmayer R, Hanke JP et al (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 37:1468–1472

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Fabio Pomerri, Anna Rita Cervino, Faise Al Bunni, Laura Evangelista, Pier Carlo Muzzio declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pomerri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerri, F., Cervino, A.R., Al Bunni, F. et al. Therapeutic impact of 18F-FDG PET/CT in recurrent differentiated thyroid carcinoma. Radiol med 119, 97–102 (2014). https://doi.org/10.1007/s11547-013-0323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-013-0323-6

Keywords

Navigation