Skip to main content
Log in

Durability improvement of polymer chamber of pulsatile extracorporeal life support system in terms of mechanical change

  • Special Issue
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Twin Pulse Life Support, T-PLS™ has received the CE mark (2003) and Korea Food and Drug Administration (KFDA) approval (2004) for short-term application as an Extracorporeal Life Support system (ECLS). T-PLS’s original intention was to apply for not only short-term but also long-term application such as Extracorporeal ventricular assist device (VAD). Hence, a long-term durability test was conducted. The 1-year reliability of the systems tested in this study did not meet the STS/ASAIO standard of 80% reliability with 60% confidence for a 1-year mission life. However, without the disposable units, which are only designed to operate for 6 h, the 1-year reliability exceeded the STS/ASAIO standard of 80% reliability with 60% confidence. In this study, by using the existing analysis methods and analyzing the root cause of the failure used by a numerical analysis. As eliminating or mitigating of the root cause of the failure, we improved the durability of blood chamber and evaluated the performance of the modified system via the hemolysis test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akira S, Motomi S, Yukihiko O, et al (1999) Major organ function under mechanical support: comparative studies of pulsatile and nonpulsatile circulation. Artif Organs 23:280–285

    Article  Google Scholar 

  2. Allen JG (1960) Extracorporeal circulation. Charles C Thomas, Springfield, IL

    Google Scholar 

  3. Austin JW, Harner DL, et al (1990) The heart-lung machine & related technologies of open heart surgery. Phoenix Medical Communication Medical Publishers, AZ

  4. Bramstedt KA, et al (2002) Failure mode and effects analysis as an informed consent tool for investigational cardiothoracic devices. ASAIO J 48:293–295

    Article  Google Scholar 

  5. Brombacher AC (2005) Reliability in strongly innovative products; a threat or a challenge? Reliability Eng Syst Saf 88:125

    Article  Google Scholar 

  6. Casas F, Reeves A, Dudzinski D, et al (2005) performance and reliability of the CPB/ECMO initiative forward lines casualty management system. ASAIO J 51:681–685

    Article  Google Scholar 

  7. Cheon GJ, et al (1990) A new type of the motor-driven blood pump for artificial heart. J Biomech Eng 112(4):473–475

    Google Scholar 

  8. Dhillon BS (2000) Medical device reliability and associated areas. CRC, Boca Raton, FL

    Google Scholar 

  9. Donovan FM Jr, et al (1975) Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater Med Devices Artif Organs 3(4):439–449

    Google Scholar 

  10. Fairbanks VF, et al (1992) Methods for measuring plasma hemoglobin in micromolar concentration compared. Clin Chem 38:132–140

    Google Scholar 

  11. Gobel C, Arvand A, Eilers R, et al (2001) Development of the MEDOS/HIA DeltaStreram extracorporeal rotary blood pump. Artif Organs 25:358–365

    Article  Google Scholar 

  12. Goto M, VanBavel E, Giezeman MJMM, et al (1996) Vasodilatory effect of pulsatile pressure on coronary resistance vessels. Circ Res 79:1039–1045

    Google Scholar 

  13. He P, Bai J, Xia DD (2005) Optimum control of the Hemopump as a left-ventricular assist device. Med Biol Eng Comput 43(1):136–141

    Article  Google Scholar 

  14. Hallquist JO (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation, Stuttgart, Germany

  15. Jassawalla JS, Daniel MA, Chen H, et al (1988) In vitro and in vivo testing of a totally implantable left ventricular assist system. ASAIO 34:470–475

    Google Scholar 

  16. Kawahito K, Nose Y, et al (1997) Hemolysis in different centrifugal pumps. Artif Organs 21:323–326

    Article  Google Scholar 

  17. Keller T, Hawrylenko A (1967) Contribution to the in vitro testing of pumps for extracorporeal circulation. J Thorac Cardiovasc Surg 54:22–29

    Google Scholar 

  18. Khana RA, Siddiquia NA, Naqvia SQA, Ahmadb S (2006) Reliability analysis of TLP tethers under impulsive loading. Reliability Eng Syst Saf 9:173–183

    Google Scholar 

  19. Lia J-A, Wuc Y, Laia KK, Liub K (2005) Reliability estimation and prediction of multi-state components and coherent systems. Reliability Eng Syst Saf 88:93–98

    Article  Google Scholar 

  20. Linneweber J, Chow TW, Takano T, et al (2001) Direct detection of red blood cell fragments: a new flow cytometric method to evaluate hemolysis in blood pumps. ASAIO J 47:533–536

    Article  Google Scholar 

  21. Maeda T, Iwasaki A, Kawahito S, et al (2000) Preclinical evaluation of a hollow fiber silicon membrane oxygenator for extracorporeal membrane oxygenator application. ASAIO J 46:426–430

    Article  Google Scholar 

  22. Misgeld BJ, Werner J, Hexamer M (2005) Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties. Med Biol Eng Comput 43(5):589–598

    Article  Google Scholar 

  23. Mueller MR, et al (1993) In vitro hematological testing of rotary blood pumps: remarks on standardization and data interpretation. Artif Organs 17:103–110

    Article  MathSciNet  Google Scholar 

  24. Mueller XM, Tevaearai HT, Horisberger J, et al (2001) Vacuum assisted venous drainage does not increase trauma to blood cells. ASAIO J 47:651–654

    Article  Google Scholar 

  25. O’Connor PDT (2002) Practical reliability engineering, 4th edn. Wiley, West Sussex, UK

    Google Scholar 

  26. Orime Y, Shiono M, Yagi S, et al (2000) Jostra rota flow RF-30 pump systems: new centrifugal blood pump for cardiopulmonary bypass. Artf Organs 24:437–441

    Article  Google Scholar 

  27. Pantalos GM, Altieri F, Berson A, Borrovetz H, et al (1998) Long-term mechanical circulatory support system reliability recommendation: American Society for Artificial Internal Organs and The Society of Thoracic Surgeons: long-term mechanical circulatory support system reliability recommendation. Ann Thorac Surg 66:1852–1859

    Article  Google Scholar 

  28. Patel SM, Allaire PE, Wood HG, et al (2005) Methods of failure and reliability assessment for mechanical heart pumps. Artif Organs 29:15–25

    Article  Google Scholar 

  29. Rho YR, Choi H, Lee JC, et al (2003) Applications of the pulsatile flow versatile ECLS: in vivo studies. Int J Artif Organs 26(5):428–435

    Google Scholar 

  30. Shin H, Yozu R, Maehara T, et al (2000) Vacuum assisted cardiopulmonary bypass in minimally invasive cardiac surgery: its feasibility and effects on hemolysis. Artif Organs 24:450–453

    Article  Google Scholar 

  31. Tayama E, Nakazawa T, Takami Y, et al (1997) The hemolysis test of Gyro (C1-E3) pump in pulsatile mode. Artif Organs 21:675–679

    Article  Google Scholar 

  32. Tayama E, Niimi Y, Takami Y, et al (1997) Hemolysis test of a centrifugal pump in a pulsatile mode: the effect of pulsatile rate and rpm variance. Artif Organs 21:1284–1287

    Article  Google Scholar 

  33. Toshihide N, Ryuji T, Ichiro N, et al (2000) Pulsatile flow enhances endothelium-derived nitric ixcide release in the peripheral vasculature. Am J Physiol Heart Circ Physiol 278:H1098–H1104

    Google Scholar 

  34. Wheeldon DR, Laforge DH, Lee J, Jansen P (2002) Novacor left ventricular assist system long term performance: comparison of clinical experiment with demonstrated in vitro reliability. ASAIO J 48:546–551

    Article  Google Scholar 

  35. Zapanta CM, Snyder AJ, Weiss WJ, et al (2005) Durability testing of a completely implantable electric total artificial heart. ASAIO 51:214–223

    Article  Google Scholar 

  36. Zuoa G, Kumamotoa H, Nishiharaa O, Hayamab R, Nakanob S (2005) Quantitative reliability analysis of different design alternatives for steer-by-wire system. Reliability Eng Syst Saf 89:241–247

    Article  Google Scholar 

  37. Zwischenberger JB, Bartlett RH, et al (1995) ECMO: extracorporeal cardiopulmonary support in critical care. Extracorporeal Life Support Organization, Ann Arbor, MI

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (#HMP-98-G-2-040) of the Good Health R&D Project, Ministry of Heath & Welfare, R.O.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soon Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Paik, S.H., Lee, K.H. et al. Durability improvement of polymer chamber of pulsatile extracorporeal life support system in terms of mechanical change. Med Bio Eng Comput 45, 1127–1135 (2007). https://doi.org/10.1007/s11517-007-0215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0215-9

Keywords

Navigation