Skip to main content
Log in

Population level virulence in polymicrobial communities associated with chronic disease

  • Review
  • Published:
Frontiers in Biology

Abstract

Renewed studies of chronic infection have shifted the focus from single pathogens to multi-microbial communities as culture-independent techniques reveal complex consortia of microbes associated with chronic disease. Despite a general acceptance that some chronic diseases are caused by mixed microbial communities, areas of research exploring community interactions as they relate to the alteration of virulence are still in the early stages. Members of the NIH Human Microbiome Project have been actively characterizing the microbial communities of the skin, nasal, oral, gastrointestinal, and urogenital cavities of healthy adults. Concomitantly, several independent studies have begun to characterize the oral, nasal, sinus, upper and lower respiratory microbiomes in healthy and diseased human tissue. The interactions among the members of these polymicrobial communities have not been thoroughly explored and it is clear there is a need to identify the functional interactions that drive population-level virulence if new therapeutic approaches to chronic disease are to be developed. For example, multiple studies have examined the role of quorum sensing (QS) in microbial virulence, and QS antagonists are being developed and tested as novel therapeutics. Other potential targets include the Gram-negative type III signaling system (T3SS), type IV pili, and two component regulatory systems (TCRS). Initial results from these studies indicate limited efficacy in vivo, further suggesting that the interactions in a heterogeneous community are complex and poorly understood. If progress is to be made in the development of more effective treatments for chronic diseases, a better understanding of the composition and functional interactions that occur within multi-microbial communities must be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzaudo M M, Busquets N P, Ronchi S, Mayoral C (2005). Isolated pathogen microorganisms in respiratory samples from children with cystic fibrosis. Rev Argent Microbiol, 37(3): 129–134

    PubMed  CAS  Google Scholar 

  • Armbruster C E, Hong W, Pang B, Weimer K E, Juneau R A, Turner J, Swords W E (2010). Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio, 1(3): e00102-10–e00102-19

    Google Scholar 

  • Arthur M, Molinas C, Courvalin P (1992). The VanS-VanR twocomponent regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol, 174(8): 2582–2591

    PubMed  CAS  Google Scholar 

  • Baddour LM, Christensen G D (1987). Prosthetic valve endocarditis due to small-colony staphylococcal variants. Rev Infect Dis, 9(6): 1168–1174

    PubMed  CAS  Google Scholar 

  • Bader M S (2008). Diabetic foot infection. Am Fam Physician, 78(1): 71–79

    PubMed  Google Scholar 

  • Bakaletz L O (2010). Immunopathogenesis of polymicrobial otitis media. J Leukoc Biol, 87(2): 213–22

    PubMed  CAS  Google Scholar 

  • Bala A, Kumar R, Harjai K(2011). Inhibition of quorum sensing in Pseudomonas aeruginosaby azithromycin and its effectiveness in urinary tract infections. J Med Microbiol, 60(Pt 3): 300–306

    PubMed  CAS  Google Scholar 

  • Bassler B L (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol, 2(6): 582–587

    PubMed  CAS  Google Scholar 

  • Bassler B L, Wright M, Silverman M R (1994). Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol, 13(2): 273–286

    PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Givskov M(2007). Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci, 362(1483): 1213–22

    PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen P O, Jakobsen T H, Phipps R, Nielsen A K, Rybtke M T, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O, the Scandinavian Cystic Fibrosis Study Consortium (2010). Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One, 5(4): e10115

    PubMed  Google Scholar 

  • Boles B R, Thoendel M, Singh P K (2005). Genetic variation in biofilms and the insurance effects of diversity. Microbiology, 151(Pt 9: 2816–2818

    PubMed  CAS  Google Scholar 

  • Brown S M (2010). Multiple strains of non-tuberculous mycobacteria in a patient with cystic fibrosis. J R Soc Med, 103(Suppl 1): 34–43

    Google Scholar 

  • Burmolle M, Thomsen T R, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B, Tolker-Nielsen T, Givskov M, Moser C, Kirketerp-Moller K, Johansen H K, Hoiby N, Jensen P O, Sorensen S J, Bjarnsholt T (2010). Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol, 59(3), 324–336

    PubMed  Google Scholar 

  • Burns J L, Emerson J, Stapp J R, Yim D L, Krzewinski J, Louden L, Ramsey B W, Clausen C R (1998). Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis, 27(1): 158–163

    PubMed  CAS  Google Scholar 

  • Chan J, Hadley J (2001). The microbiology of chronic rhinosinusitis: results of a community surveillance study. Ear Nose Throat J, 80(3): 143–145

    PubMed  CAS  Google Scholar 

  • Charlson E S, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman F D, Collman R G (2010). Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS ONE, 5(12): e15216

    PubMed  CAS  Google Scholar 

  • Chen P B, Davern L B, Katz J, Eldridge J H, Michalek S M (1996). Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. Oral Microbiol Immunol, 11(4): 274–281

    PubMed  CAS  Google Scholar 

  • Cherry D K, Woodwell D A (2002). National Ambulatory Medical Care Survey: 2000 summary. Adv Data, 328: 1–32

    PubMed  Google Scholar 

  • Deng D M, Liu M J, ten Cate J M, Crielaard W (2007). The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res, 86(7): 606–610

    PubMed  CAS  Google Scholar 

  • Dewhirst F E, Chen T, Izard J, Paster B J, Tanner A C, Yu W H, Lakshmanan A, Wade W G (2010). The human oral microbiome. J Bacteriol, 192(19): 5002–5017

    PubMed  CAS  Google Scholar 

  • Duque C, Stipp R N, Wang B, Smith D J, Hofling J F, Kuramitsu H K, Duncan M J, Mattos-Graner R O (2011). Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun, 79(2): 786–796

    PubMed  CAS  Google Scholar 

  • Ebersole J L, Feuille F, Kesavalu L, Holt S C (1997). Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Microb Pathog, 23(1): 23–32

    PubMed  CAS  Google Scholar 

  • Ehrlich G D, Ahmed A, Earl J, Hiller N L, Costerton J W, Stoodley P, Post J C, Demeo P, Hu F Z (2010). The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol Med Microbiol, 59(3): 269–279

    PubMed  CAS  Google Scholar 

  • Ehrlich G D, Hiller N L, Hu F Z (2008). What makes pathogens pathogenic. Genome Biol, 9(6): 225

    PubMed  Google Scholar 

  • Ehrlich G D, Hu F Z, Shen K, Stoodley P, Post J C (2005). Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res, (437):20–24

    PubMed  Google Scholar 

  • Evers S, Courvalin P (1996). Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol, 178(5): 1302–1309

    PubMed  CAS  Google Scholar 

  • Falleiros de Padua R A, Norman Negri M F, Svidzinski A E, Nakamura C V, Svidzinski T I (2008). Adherence of Pseudomonas aeruginosa and Candida albicans to urinary catheters. Rev Iberoam Micol, 25(3): 173–175

    PubMed  Google Scholar 

  • Feuille F, Ebersole J L, Kesavalu L, Stepfen M J, Holt S C (1996). Mixed infection with Porphyromonas gingivalis and Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence. Infect Immun, 64(6): 2094–2100

    PubMed  CAS  Google Scholar 

  • Foreman A, Psaltis A J, Tan L W, Wormald P J (2009). Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am J Rhinol Allergy, 23(6): 556–561

    PubMed  Google Scholar 

  • Foreman A, Wormald P J (2010). Different biofilms, different disease? A clinical outcomes study. Laryngoscope, 120(8): 1701–1706

    PubMed  Google Scholar 

  • Galperin M Y (2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol, 188(12): 4169–4182

    PubMed  CAS  Google Scholar 

  • Geske G D, O’Neill J C, Blackwell H E (2007). N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem Biol, 2(5): 315–319

    PubMed  CAS  Google Scholar 

  • Geske G D, O’Neill J C, Miller D M, Mattmann M E, Blackwell H E (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc, 129(44): 13613–13625

    PubMed  CAS  Google Scholar 

  • Gotoh Y, Doi A, Furuta E, Dubrac S, Ishizaki Y, Okada M, Igarashi M, Misawa N, Yoshikawa H, Okajima T, Msadek T, Utsumi R (2010). Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo), 63(3): 127–134

    CAS  Google Scholar 

  • Guggenheim B, Gmur R, Galicia J C, Stathopoulou P G, Benakanakere M R, Meier A, Thurnheer T, Kinane D F (2009). In vitro modeling of host-parasite interactions: the ’subgingival’ biofilm challenge of primary human epithelial cells. BMC Microbiol, 9: 280

    PubMed  Google Scholar 

  • Hall-Stoodley L, Hu F Z, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg D P, Dice B, Burrows A, Wackym P A, Stoodley P, Post J C, Ehrlich G D, Kerschner J E (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA, 296(2): 202–211

    PubMed  CAS  Google Scholar 

  • Healy D Y, Leid J G, Sanderson A R, Hunsaker D H (2008). Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg, 138(5): 641–647

    PubMed  Google Scholar 

  • Hemady R K (1995). Microbial keratitis in patients infected with the human immunodeficiency virus. Ophthalmology, 102(7): 1026–1030

    PubMed  CAS  Google Scholar 

  • Hentzer M, Eberl L, Nielsen J, Givskov M (2003). Quorum sensing: a novel target for the treatment of biofilm infections. BioDrugs, 17(4): 241–250

    PubMed  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen J B, Riedel K, Rasmussen T B, Bagge N, Kumar N, Schembri M A, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J, 22(15): 3803–3815

    PubMed  CAS  Google Scholar 

  • Hermann C, Hermann J, Munzel U, Røchel R (1999). Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses, 42(11–12): 619–627

    PubMed  CAS  Google Scholar 

  • Higgins D A, Pomianek M E, Kraml C M, Taylor R K, Semmelhack M F, Bassler B L (2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450(7171): 883–886

    PubMed  CAS  Google Scholar 

  • HoffmanL R, Deziel E, D’Argenio D A, Lepine F, Emerson J, McNamara S, Gibson R L, Ramsey B W, Miller S I (2006). Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 103(52): 19890–19895

    Google Scholar 

  • Hogan D A, Kolter R (2002). Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 296(5576): 2229–22232

    PubMed  CAS  Google Scholar 

  • Hoiby N (1974). Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. Acta Pathol Microbiol Scand B Microbiol Immunol, 82(4): 541–550

    PubMed  CAS  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol, 5(11): 1663–1674

    PubMed  Google Scholar 

  • Holcombe L J, McAlester G, Munro C A, Enjalbert B, Brown A J, Gow N A, Ding C, Butle G R, O’Gara F, Morrissey J P (2010). Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology, 156(Pt 5): 1476–1486

    PubMed  CAS  Google Scholar 

  • Hong H J, Hutchings M I, Buttner M J, the Biotechnology and Biological Sciences Research Council, UK (2008). Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol, 631: 200–213

    PubMed  CAS  Google Scholar 

  • Hu F Z, Ehrlich G D (2008). Population-level virulence factors amongst pathogenic bacteria: relation to infection outcome. Future Microbiol, 3(1): 31–42

    PubMed  Google Scholar 

  • Ito R, Ishihara K, Shoji M, Nakayama K, Okuda K (2010). Hemagglutinin/adhesin domains of Porphyromonas gingivalis play key roles in coaggregation with Treponema denticola. FEMS Immunol Med Microbiol, 60(3): 251–260

    PubMed  CAS  Google Scholar 

  • Jakubovics N S, Kolenbrander P E (2010). The road to ruin: the formation of disease-associated oral biofilms. Oral Dis, 16(8): 729–739

    PubMed  CAS  Google Scholar 

  • Jenkinson H F, Lamont R J (2005). Oral microbial communities in sickness and in health. Trends Microbiol, 13(12): 589–595

    PubMed  CAS  Google Scholar 

  • Jesaitis A J, Franklin MJ, Berglund D, Sasaki M, Lord C I, Bleazard J B, Duffy J E, Beyenal H, Lewandowski Z (2003). Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol, 171(8): 4329–4339

    PubMed  CAS  Google Scholar 

  • Jones M B, Peterson S N, Benn R, Braisted J C, Jarrahi B, Shatzkes K, Ren D, Wood T K, Blaser M J (2010). Role of luxS in Bacillus anthracis growth and virulence factor expression. Virulence, 1(2): 72–83

    PubMed  Google Scholar 

  • Kahl B, Herrmann M, Everding A S, Koch H G, Becker K, Harms E, Proctor R A, Peters G (1998). Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis, 177(4): 1023–1029

    PubMed  CAS  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004a). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett, 230(1): 13–18

    PubMed  CAS  Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol, 186(24): 8172–8180

    PubMed  CAS  Google Scholar 

  • Kesavalu L, Holt S C, Ebersole J L (1998). Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol Immunol, 13(6): 373–377

    PubMed  CAS  Google Scholar 

  • Klinger J D, Thomassen M J (1985). Occurrence and antimicrobial susceptibility of Gram-negative nonfermentative bacilli in cystic fibrosis patients. Diagn Microbiol Infect Dis, 3(2): 149–158

    PubMed  CAS  Google Scholar 

  • Kolenbrander P E (2000). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol, 54: 413–437

    PubMed  CAS  Google Scholar 

  • Kolenbrander P E, Andersen R N, Blehert D S, Egland P G, Foster J S, Palmer R J Jr (2002). Communication among oral bacteria. Microbiol Mol Biol Rev, 66(3): 486–505

    PubMed  CAS  Google Scholar 

  • Kolenbrander P E, Palmer R J Jr, Rickard A H, Jakubovics N S, Chalmers N I, Diaz P I (2006). Bacterial interactions and successions during plaque development. Periodontol 2000, 42: 47–79

    Google Scholar 

  • Krishnamurthy A, McGrath J, Cripps A W, Kyd J M (2009). The incidence of Streptococcus pneumoniae otitis media is affected by the polymicrobial environment particularly Moraxella catarrhalis in a mouse nasal colonisation model. Microbes Infect, 11(5): 545–553

    PubMed  CAS  Google Scholar 

  • Lambiase A, Catania M R, Del Pezzo M, Rossano F, Terlizzi V, Sepe A, Raia V (2011). Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis

  • Lanza D C, Kennedy D W (1997). Adult rhinosinusitis defined. Otolaryngol Head Neck Surg, 117(Suppl 3): 1–7

    Google Scholar 

  • Lattar S M, Tuchscherr L P, Caccuri R L, Centron D, Becker K, Alonso C A, Barberis C, Miranda G, Buzzola F R, von Eiff C, Sordelli D O (2009). Capsule expression and genotypic differences among Staphylococcus aureus isolates from patients with chronic or acute osteomyelitis. Infect Immun, 77(5): 1968–1975

    PubMed  CAS  Google Scholar 

  • Lee B, Haagensen J A, Ciofu O, Andersen J B, Hoiby N, Molin S (2005). Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol, 43(10): 5247–5255

    PubMed  CAS  Google Scholar 

  • Leid J G, Costerton J W, Shirtliff M E, Gilmore M S, Engelbert M (2002). Immunology of Staphylococcal biofilm infections in the eye: new tools to study biofilm endophthalmitis. DNA Cell Biol, 21(5–6): 405–413

    PubMed  CAS  Google Scholar 

  • Leid J G, Kerr M, Selgado C, Johnson C, Moreno G, Smith A, Shirtliff M E, O’Toole G A, Cope E K (2009). Flagellar-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host derived lactoferrin. Infect Immun, 77(10): 4559–4566

    PubMed  CAS  Google Scholar 

  • Leid J G, Willson C J, Shirtliff ME, Hassett D J, Parsek MR, Jeffers A K (2005). The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol, 175(11): 7512–7518

    PubMed  CAS  Google Scholar 

  • Li J, Helmerhorst E J, Leone CW, Troxler R F, Yaskell T, Haffajee A D, Socransky S S, Oppenheim F G (2004). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol, 97(6): 1311–1318

    PubMed  CAS  Google Scholar 

  • Li M, Villaruz A E, Vadyvaloo V, Sturdevant D E, Otto M (2008). AI-2-dependent gene regulation in Staphylococcus epidermidis. BMC Microbiol, 8: 4

    PubMed  Google Scholar 

  • Ly N, McCaig L F (2002). National Hospital Ambulatory Medical Care Survey: 2000 outpatient department summary. Adv Data, (327): 1–27

    PubMed  Google Scholar 

  • Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S (2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett, 255(1): 115–120

    PubMed  CAS  Google Scholar 

  • Moore J E, Reid A, Millar B C, Jiru X, Mccaughan J, Goldsmith C E, Collins J, Murphy P G, Elborn J S (2002). Pandoraea apista isolated from a patient with cystic fibrosis: problems associated with laboratory identification. Br J Biomed Sci, 59(3): 164–166

    PubMed  Google Scholar 

  • Nadel D M, Lanza D C, Kennedy D W (1999). Endoscopically guided sinus cultures in normal subjects. Am J Rhinol, 13(2): 87–90

    PubMed  CAS  Google Scholar 

  • Nyvad B, Kilian M (1987). Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res, 95(5): 369–380

    PubMed  CAS  Google Scholar 

  • Palmer R J Jr, Gordon S M, Cisar J O, Kolenbrander P E (2003). Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol, 185(11): 3400–3409

    PubMed  CAS  Google Scholar 

  • Palmer R J Jr, Kazmerzak K, Hansen M C, Kolenbrander P E (2001). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun, 69(9): 5794–5804

    PubMed  CAS  Google Scholar 

  • Park J E, Yung R, Stefanowicz D, Shumansky K, Akhabir L, Durie P R, Corey M, Zielenski J, Dorfman R, Daley D, Sandford A J (2011). Cystic fibrosis modifier genes related to Pseudomonas aeruginosa infection. Genes Immun

  • Periasamy S, Kolenbrander P E (2009). Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol, 191(22): 6804–6411

    PubMed  CAS  Google Scholar 

  • Perloff J R, Palmer J N (2004). Evidence of bacterial biofilms on frontal recess stents in patients with chronic rhinosinusitis. Am J Rhinol, 18(6): 377–380

    PubMed  Google Scholar 

  • Peters B M, Jabra-Rizk M A, Scheper M A, Leid J G, Costerton J W, Shirtliff M E (2010). Microbial interactions and differential protein expre ssion in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol, 59(3): 493–503

    PubMed  CAS  Google Scholar 

  • Prince A A, Steiger J D, Khalid A N, Dogrhamji L, Reger C, Eau Claire S, Chiu A G, Kennedy D W, Palmer J N, Cohen N A (2008). Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol, 22(3): 239–245

    PubMed  Google Scholar 

  • Proctor R A, Von Eiff C, Kahl B C, Becker K, McNamara P, Herrmann M, Peters G (2006). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol, 4(4): 295–305

    PubMed  CAS  Google Scholar 

  • Ramsey M M, Whiteley M (2009). Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A, 106(5): 1578–1583

    PubMed  CAS  Google Scholar 

  • Rickard A H, Palmer R J Jr, Blehert D S, Campagna S R, Semmelhack M F, Egland P G, Bassler B L, Kolenbrander P E (2006). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol, 60(6): 1446–1456

    PubMed  CAS  Google Scholar 

  • Roberts M E, Stewart P S (2004). Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother, 48(1): 48–52

    PubMed  CAS  Google Scholar 

  • Rolauffs B, Bernhardt T M, von Eiff C, Hart M L, Bettin D (2002). Osteopetrosis, femoral fracture, and chronic osteomyelitis caused by Staphylococcus aureus small colony variants (SCV) treated by girdlestone resection—6-year follow-up. Arch Orthop Trauma Surg, 122(9–10): 547–550

    PubMed  CAS  Google Scholar 

  • Romano J D, Kolter R (2005). Pseudomonas-Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J Bacteriol, 187(3): 940–948

    PubMed  CAS  Google Scholar 

  • Ryan R P, Dow J M (2008). Diffusible signals and interspecies communication in bacteria. Microbiology, 154(7): 1845–1858

    PubMed  CAS  Google Scholar 

  • Sanderson A R, Leid J G, Hunsaker D (2006). Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope, 116(7): 1121–1126

    PubMed  Google Scholar 

  • Schauder S, Shokat K, Surette M G, Bassler B L (2001). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorumsensing signal molecule. Mol Microbiol, 41(2): 463–476

    PubMed  CAS  Google Scholar 

  • Shirtliff M E, Peters B M, Jabra-Rizk M A (2009). Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett, 299(1): 1–8

    PubMed  CAS  Google Scholar 

  • Soni K A, Lu L, Jesudhasan P R, Hume ME, Pillai S D (2008). Influence of autoinducer-2 (AI-2) and beef sample extracts on E. coli O157:H7 survival and gene expression of virulence genes yadK and hhA. J Food Sci, 73(3): M135–M139

    PubMed  CAS  Google Scholar 

  • Soni K, Jesudhasan P, Cepeda M, Williams B, Hume M, Russell W K, Jayaraman A, Pillai S D (2007). Proteomic analysis to identify the role of LuxS/AI-2 mediated protein expression in Escherichia coli O157:H7. Foodborne Pathog Dis, 4(4): 463–471

    PubMed  CAS  Google Scholar 

  • Stelzmueller I, Biebl M, Wiesmayr S, Eller M, Hoeller E, Fille M, Weiss G, Lass-Floerl C, Bonatti H (2006). Ralstonia pickettii—innocent bystander or a potential threat? Clin Microbiol Infect, 12(2): 99–101

    PubMed  CAS  Google Scholar 

  • Stephenson M F, Mfuna L, Dowd S E, Wolcott R D, Barbeau J, Poisson M, James G, Desrosiers M (2010). Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg, 39(2): 182–187

    PubMed  Google Scholar 

  • Stone A, Saiman L (2007). Update on the epidemiology and management of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, in patients with cystic fibrosis. Curr Opin Pulm Med, 13(6): 515–521

    PubMed  Google Scholar 

  • Surette M G, Miller M B, Bassler B L (1999). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA, 96(4): 1639–1644

    PubMed  CAS  Google Scholar 

  • Swem L R, Swem D L, O’Loughlin C T, Gatmaitan R, Zhao B, Ulrich S M, Bassler B L (2009). A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell, 35(2): 143–153

    PubMed  CAS  Google Scholar 

  • Taga M E, Semmelhack J L, Bassler B L (2001). The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol, 42(3): 777–793

    PubMed  CAS  Google Scholar 

  • Tribble G D, Lamont G J, Progulske-Fox A, Lamont R J (2007). Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J Bacteriol, 189(17): 6382–6388

    PubMed  CAS  Google Scholar 

  • Ulrich L E, Zhulin I B (2007). MiST: a microbial signal transduction database. Nucleic Acids Res, 35(Database issue): D386–D390

    PubMed  CAS  Google Scholar 

  • Waters C M, Bassler B L (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 21(1): 319–346

    PubMed  CAS  Google Scholar 

  • Weimer K E, Armbruster C E, Juneau R A, Hong W, Pang B, Swords W E (2010). Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease. J Infect Dis, 202(7): 1068–1075

    PubMed  Google Scholar 

  • Wellinghausen N, Essig A, Sommerburg O (2005). Inquilinus limosus in patients with cystic fibrosis, Germany. Emerg Infect Dis, 11(3): 457–459

    PubMed  Google Scholar 

  • Wolcott R, Dowd S (2011). The role of biofilms: are we hitting the right target? Plast Reconstr Surg, 127(Suppl 1): 28–35

    Google Scholar 

  • Xavier K B, Bassler B L (2005). Interference with AI-2-mediated bacterial cell-cell communication. Nature, 437(7059): 750–753

    PubMed  CAS  Google Scholar 

  • Xu K D, Stewart P S, Xia F, Huang C T, McFeters G A (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol, 64(10): 4035–4039

    PubMed  CAS  Google Scholar 

  • Zhao L, Xue T, Shang F, Sun H, Sun B (2010). Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun, 78(8): 3506–3815

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff G. Leid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leid, J.G., Cope, E. Population level virulence in polymicrobial communities associated with chronic disease. Front. Biol. 6, 435–445 (2011). https://doi.org/10.1007/s11515-011-1153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1153-3

Keywords

Navigation