Skip to main content
Log in

Plasmonic Core–Shell Nanowires for Enhanced Second-Harmonic Generation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang ZL, Song J (2012) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  Google Scholar 

  2. Bao J, Zimmler MA, Capasso F (2006) Broadband ZnO single-nanowire light-emitting diode. Nano Letters 6:1719–1722

    Article  CAS  Google Scholar 

  3. Voss T, Svacha GT, Mazur E, Mu S, Konjhodzic D, Marlow F, Müller S, Ronning C (2007) High-order waveguide modes in ZnO nanowires. Nano Letters 7:3675–3680

    Article  CAS  Google Scholar 

  4. Yum K, Na S, Xiang Y, Wang N, Yu M-F (2009) Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Letters 9

  5. Singhal R, Orynbayeva Z, Venkat R, Sundaram K, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y (2010) Multifunctional carbon-nanotube cellular endoscopes. Nat Nanotechnol 6:57–64

    Article  Google Scholar 

  6. Yan R, Park J-H, Choi Y, Heo C-J, Yang LP Lee S-M (2012) Nanowire-based single-cell endoscopy. Nat Nanotechnol 7:191–196

    Article  CAS  Google Scholar 

  7. Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P (2007) Tunable nanowire nonlinear optical probe. Nature 447:1098–1101

    Article  CAS  Google Scholar 

  8. Grange R et al (2009) Lithium niobate nanowires synthesis, optical properties, and manipulation. Appl Phys Lett 95:143105–143105

    Article  Google Scholar 

  9. Pu Y, Grange R, Hsieh C-L, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104:1–4

    Article  Google Scholar 

  10. Gobin M, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Letters 9(5):2193–2198

    Google Scholar 

  11. Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forró L (2006) Growth of single-crystalline KNbO3 nanostructures. J Phys Chem B 110:58–61

    Article  CAS  Google Scholar 

  12. Katz L, Megaw HD (1967) Structure of potassium niobate at room temperature—solution of a pseudosymmetric structure by fourier methods. Acta Cryst 22:639–648

    Google Scholar 

  13. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381

    Article  CAS  Google Scholar 

  14. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309

    Article  CAS  Google Scholar 

  15. Caruso F, Möhwald H (2011) Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15(23):8276–8281

    Article  Google Scholar 

  16. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  17. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  18. Boyd RW (2007) Nonlinear optics. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported and financed by the Jena School for Microbial Communication, the Carl Zeiss Foundation, and the Pro Chance program of the FSU Jena. Thanks go to C. Apfel for X-ray measurements, the IPHT for the equipment for zeta potential measurements, N. Janunts for setting up the spectroscope, and the nanooptics group at the Institute for Applied Physics for theoretical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, J., Steinbrück, A., Pertsch, T. et al. Plasmonic Core–Shell Nanowires for Enhanced Second-Harmonic Generation. Plasmonics 8, 115–120 (2013). https://doi.org/10.1007/s11468-012-9429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9429-2

Keywords

Navigation