Skip to main content
Log in

Relativistic quantum effects of Dirac particles simulated by ultracold atoms

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Feynman, Int. J. Theor. Phys., 1982, 21(6–7): 467

    MathSciNet  Google Scholar 

  2. See the reviews in Insight: Quantum Coherence, Nature, 2008, 453(7198): 1003

  3. I. Buluta and F. Nori, Science, 2009, 326(5949): 108

    ADS  Google Scholar 

  4. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature, 2002, 415(6867): 39

    ADS  Google Scholar 

  5. T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Phys. Rev. Lett., 2004, 92(13): 130403

    ADS  Google Scholar 

  6. I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett., 2007, 98(8): 080404

    ADS  Google Scholar 

  7. J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature, 2011, 472(7343): 307

    ADS  Google Scholar 

  8. A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, Nat. Phys., 2008, 4(10): 757

    Google Scholar 

  9. K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, Nature, 2010, 465(7298): 590

    ADS  Google Scholar 

  10. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Nature, 2010, 463(7277): 68

    ADS  Google Scholar 

  11. R. Gerritsma, B. P. Lanyon, G. Kirchmair, F. Zähringer, C. Hempel, J. Casanova, J. J. García-Ripoll, E. Solano, R. Blatt, and C. F. Roos, Phys. Rev. Lett., 2011, 106(6): 060503

    ADS  Google Scholar 

  12. J. T. Barreiro, M. Müler, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, Nature, 2011, 470(7335): 486

    ADS  Google Scholar 

  13. J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, Phys. Rev. Lett., 2010, 104(3): 030502

    ADS  Google Scholar 

  14. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science, 1995, 269(5221): 198

    ADS  Google Scholar 

  15. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 1999, 71(3): 463

    ADS  Google Scholar 

  16. C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett., 2004, 92(4): 040403

    ADS  Google Scholar 

  17. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 2008, 80(4): 1215

    ADS  Google Scholar 

  18. J. Liu and B. Liu, Front. Phys. China, 2010, 5(2): 123

    ADS  MATH  Google Scholar 

  19. H. Jing, Y. Jiang, and Y. Deng, Front. Phys., 2011, 6(1): 15

    Google Scholar 

  20. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sende, and U. Sen, Adv. Phys., 2007, 56(2): 243

    ADS  Google Scholar 

  21. H. Zhai, Front. Phys. China, 2009, 4(1): 1

    MathSciNet  ADS  Google Scholar 

  22. A. Klein and D. Jaksch, Phys. Rev. A, 2006, 73(5): 053613

    ADS  Google Scholar 

  23. M. A. Baranov, K. Osterloh, and M. Lewenstein, Phys. Rev. Lett., 2005, 94(7): 070404

    ADS  Google Scholar 

  24. A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett., 2005, 94(8): 086803

    ADS  Google Scholar 

  25. G. B. Jo, Y. R. Lee, J. H. Choi, C. A. Christensen, T. H. Kim, J. H. Thywissen, D. E. Pritchard, and W. Ketterle, Science, 2009, 325(5947): 1521

    ADS  Google Scholar 

  26. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Cléent, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature, 2008, 453(7197): 891

    ADS  Google Scholar 

  27. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature, 2008, 453(7197): 895

    ADS  Google Scholar 

  28. B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys., 2010, 6(5): 354

    Google Scholar 

  29. L. Sanchez-Palencia and M. Lewenstein, Nat. Phys., 2010, 6(2): 87

    Google Scholar 

  30. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 2000, 85(22): 4643

    ADS  Google Scholar 

  31. U. R. Fischer and R. Schützhold, Phys. Rev. A, 2004, 70(6): 063615

    ADS  Google Scholar 

  32. M. Snoek, M. Haque, S. Vandoren, and H. T. C. Stoof, Phys. Rev. Lett., 2005, 95(25): 250401

    ADS  Google Scholar 

  33. Y. Yu and K. Yang, Phys. Rev. Lett., 2008, 100(9): 090404

    ADS  Google Scholar 

  34. Y. Yu and K. Yang, Phys. Rev. Lett., 2010, 105(15): 150605

    ADS  Google Scholar 

  35. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666

    ADS  Google Scholar 

  36. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 2005, 438(7065): 197

    ADS  Google Scholar 

  37. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82(4): 3045

    ADS  Google Scholar 

  38. W. Greiner, Relativistic Quantum Mechanics, 3rd Ed., Berlin: Spinger-Verleg, 2003

    Google Scholar 

  39. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1930, 24: 418

    Google Scholar 

  40. O. Klein, Z. Phys., 1929, 50: 157

    ADS  Google Scholar 

  41. S. L. Zhu, B. Wang, and L. M. Duan, Phys. Rev. Lett., 2007, 98(26): 260402

    ADS  Google Scholar 

  42. E. Zhao and A. Paramekanti, Phys. Rev. Lett., 2006, 97(23): 230404

    ADS  Google Scholar 

  43. C. Wu and S. Das Sarma, Phys. Rev. B, 2008, 77(23): 235107

    ADS  Google Scholar 

  44. B. Wunsch, F. Guinea, and F. Sols, New J. Phys., 2008, 10(10): 103027

    ADS  Google Scholar 

  45. K. L. Lee, B. Grémaud, R. Han, B. G. Englert, and C. Miniatura, Phys. Rev. A, 2009, 80(4): 043411

    ADS  Google Scholar 

  46. A. Dutta, R. R. P. Singh, and U. Divakaran, Europhys. Lett., 2010, 89(6): 67001

    ADS  Google Scholar 

  47. D. Poletti, C. Miniatura, and B. Grémaud, Europhys. Lett., 2011, 93(3): 37008

    ADS  Google Scholar 

  48. D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler, Phys. Rev. A, 2009, 80(6): 063603

    ADS  Google Scholar 

  49. D. Bercioux, N. Goldman, and D. F. Urban, Phys. Rev. A, 2011, 83(2): 023609

    ADS  Google Scholar 

  50. R. Shen, L. B. Shao, B. Wang, and D. Y. Xing, Phys. Rev. B, 2010, 81(4): 041410 (R)

    ADS  Google Scholar 

  51. I. I. Satija, D. C. Dakin, J. Y. Vaishnav, and C. W. Clark, Phys. Rev. A, 2008, 77(4): 043410

    ADS  Google Scholar 

  52. J. M. Hou, W. X. Yang, and X. J. Liu, Phys. Rev. A, 2009, 79(4): 043621

    ADS  Google Scholar 

  53. L. K. Lim, C. M. Smith, and A. Hemmerich, Phys. Rev. Lett., 2008, 100(13): 130402

    ADS  Google Scholar 

  54. L. K. Lim, A. Hemmerich, and C. M. Smith, Phys. Rev. A, 2010, 81(2): 023404

    ADS  Google Scholar 

  55. L. K. Lim, A. Lazarides, A. Hemmerich, and C. M. Smith, Europhys. Lett., 2009, 88(3): 36001

    ADS  Google Scholar 

  56. N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M. Lewenstein, and M. A. Martin-Delgado, Phys. Rev. Lett., 2009, 103(3): 035301

    ADS  Google Scholar 

  57. X. J. Liu, X. Liu, C. Wu, and J. Sinova, Phys. Rev. A, 2010, 81(3): 033622

    ADS  Google Scholar 

  58. M. P. Kennett, N. Komeilizadeh, K. Kaveh, and P. M. Smith, Phys. Rev. A, 2011, 83(5): 053636

    ADS  Google Scholar 

  59. M. Yang and S. L. Zhu, Phys. Rev. A, 2010, 82(6): 064102

    ADS  Google Scholar 

  60. A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado, Phys. Rev. Lett., 2010, 105(19): 190404

    ADS  Google Scholar 

  61. L. Lepori, G. Mussardo, and A. Trombettoni, Europhys. Lett., 2010, 92(5): 50003

    ADS  Google Scholar 

  62. L.M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett., 2003, 91(9): 090402

    ADS  Google Scholar 

  63. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 2005, 438(7065): 201

    ADS  Google Scholar 

  64. G. W. Semenoff, Phys. Rev. Lett., 1984, 53(26): 2449

    MathSciNet  ADS  Google Scholar 

  65. X. G. Wen, Quantum Field Theory of Many-Body Systems, Oxford: Oxford University, 2004

    Google Scholar 

  66. A. Bermudez, N. Goldman, A. Kubasiak, M. Lewenstein, and M. A. Martin-Delgado, New J. Phys., 2010, 12(3): 033041

    ADS  Google Scholar 

  67. J. K. Block and N. Nygaard, Phys. Rev. A, 2010, 81(5): 053421

    ADS  Google Scholar 

  68. C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev. Lett., 2007, 99(7): 070401

    ADS  Google Scholar 

  69. P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Nat. Phys., 2011, 7(5): 434

    Google Scholar 

  70. V. Apaja, M. Hyrkäs, and M. Manninen, Phys. Rev. A, 2010, 82(4): 041402 (R)

    ADS  Google Scholar 

  71. D. Jaksch and P. Zoller, New J. Phys., 2003, 5(1): 56

    ADS  Google Scholar 

  72. K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, Phys. Rev. Lett., 2005, 95(1): 010403

    ADS  Google Scholar 

  73. F. Gerbier and J. Dalibard, New J. Phys., 2010, 12(3): 033007

    ADS  Google Scholar 

  74. N. Goldman, A. Kubasiak, P. Gaspard, and M. Lewenstein, Phys. Rev. A, 2009, 79(2): 023624

    ADS  Google Scholar 

  75. L. H. Karsten and J. Smith, Nucl. Phys. B, 1981, 183(1–2): 103

    ADS  Google Scholar 

  76. H. B. Nielsen and M. Ninomiya, Nucl. Phys. B, 1981, 185(1): 20

    MathSciNet  ADS  Google Scholar 

  77. K. Wilson, New Phenomena in Subnuclear Physics, New York: Plenum, 1977

    Google Scholar 

  78. X. L. Qi, R. Li, J. Zang, and S. C. Zhang, Science, 2009, 323(5918): 1184

    MathSciNet  ADS  MATH  Google Scholar 

  79. M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science, 2006, 311(5760): 492

    ADS  Google Scholar 

  80. J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett., 1999, 82(23): 4569

    ADS  Google Scholar 

  81. F. D. M. Haldane, Phys. Rev. Lett., 1988, 61(18): 2015

    MathSciNet  ADS  Google Scholar 

  82. M. Onoda and N. Nagaosa, Phys. Rev. Lett., 2003, 90(20): 206601

    ADS  Google Scholar 

  83. C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Phys. Rev. Lett., 2008, 101(14): 146802

    ADS  Google Scholar 

  84. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science, 2010, 329(5987): 61

    ADS  Google Scholar 

  85. Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B, 2010, 82(16): 161414

    ADS  Google Scholar 

  86. Y. Zhang and C. Zhang, Phys. Rev. B, 2011, 84(8): 085123

    ADS  Google Scholar 

  87. H. Li, L. Sheng, and D. Y. Xing, Phys. Rev. B, 2011, 84(3): 035310

    ADS  Google Scholar 

  88. L. B. Shao, S. L. Zhu, L. Sheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. Lett., 2008, 101(24): 246810

    ADS  Google Scholar 

  89. C. Wu, Phys. Rev. Lett., 2008, 101(18): 186807

    ADS  Google Scholar 

  90. N. Gemelke, Ph.D. thesis, Stanford University, 2007

  91. M. Zhang, H. Hung, C. Zhang, and C. Wu, Phys. Rev. A, 2011, 83(2): 023615

    ADS  Google Scholar 

  92. X. J. Liu, X. Liu, C. Wu, and J. Sinova, Phys. Rev. A, 2010, 81(3): 033622

    ADS  Google Scholar 

  93. G. Juzeliunas and P. Ö hberg, Phys. Rev. Lett., 2004, 93(3): 033602

    ADS  Google Scholar 

  94. G. Juzeliunas, P. Öhberg, J. Ruseckas, and A. Klein, Phys. Rev. A, 2005, 71(5): 053614

    ADS  Google Scholar 

  95. P. Öhberg, G. Juzeliunas, J. Ruseckas, and M. Fleischhauer, Phys. Rev. A, 2005, 72(5): 053632

    ADS  Google Scholar 

  96. G. Juzeliunas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A, 2006, 73(2): 025602

    ADS  Google Scholar 

  97. S. L. Zhu, H. Fu, C. J. Wu, S. C. Zhang, and L. M. Duan, Phys. Rev. Lett., 2006, 97(24): 240401

    ADS  Google Scholar 

  98. K. J. Günter, M. Cheneau, T. Yefsah, S. P. Rath, and J. Dalibard, Phys. Rev. A, 2009, 79(1): 011604 (R)

    ADS  Google Scholar 

  99. J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, arXiv:cond-mat/1008.5378, 2010

  100. J. Ruseckas and G. Juzeliunas, Phys. Rev. Lett., 2005, 95(1): 010404

    ADS  Google Scholar 

  101. F. Wilczek and A. Zee, Phys. Rev. Lett., 1984, 52(24): 2111

    MathSciNet  ADS  Google Scholar 

  102. G. Juzeliunas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Phys. Rev. A, 2008, 77(1): 011802 (R)

    ADS  Google Scholar 

  103. S. L. Zhu, D. W. Zhang, and Z. D. Wang, Phys. Rev. Lett., 2009, 102(21): 210403

    ADS  Google Scholar 

  104. M. Merkl, F. E. Zimmer, G. Juzeliunas, and P. Öhberg, Europhys. Lett., 2008, 83(5): 54002

    ADS  Google Scholar 

  105. D. W. Zhang, Z. Y. Xue, H. Yan, Z. D. Wang, and S. L. Zhu, arXiv:1104.0444, 2011

  106. N. R. Cooper, Adv. Phys., 2008, 57(6): 539

    ADS  Google Scholar 

  107. M. Burrello and A. Trombettoni, Phys. Rev. Lett., 2010, 105(12): 125304

    ADS  Google Scholar 

  108. X. J. Liu, X. Liu, L. C. Kwek, and C. H. Oh, Front. Phys. China, 2008, 3(2): 113

    ADS  Google Scholar 

  109. I. B. Spielman, Phys. Rev. A, 2009, 79(6): 063613

    ADS  Google Scholar 

  110. Y. J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Phys. Rev. Lett., 2009, 102(13): 130401

    ADS  Google Scholar 

  111. Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Nature, 2009, 462(7273): 628

    ADS  Google Scholar 

  112. Y. J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, and I. B. Spielman, Nat. Phys., 2011, 7: 531

    Google Scholar 

  113. T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A, 2008, 78(2): 023616

    ADS  Google Scholar 

  114. C. J. Wang, C. Gao, C. M. Jian, and H. Zhai, Phys. Rev. Lett., 2010, 105(16): 160403

    ADS  Google Scholar 

  115. T. L. Ho and S. Zhang, arXiv:cond-mat/1007.0650, 2010

  116. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Nature, 2011, 471(7336): 83

    ADS  Google Scholar 

  117. X. J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev. Lett., 2009, 102(4): 046402

    ADS  Google Scholar 

  118. G. Juzeliunas, J. Ruseckas, and J. Dalibard, Phys. Rev. A, 2010, 81(5): 053403

    ADS  Google Scholar 

  119. Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Öhberg, Phys. Rev. B, 2011, 84(16): 165115

    ADS  Google Scholar 

  120. M. Merkl, A. Jacob, F. E. Zimmer, P. Öhberg, and L. Santos, Phys. Rev. Lett., 2010, 104(7): 073603

    ADS  Google Scholar 

  121. L. H. Haddad and L. D. Carr, Physica D, 2009, 238(15): 1413

    MathSciNet  ADS  MATH  Google Scholar 

  122. L. H. Haddad and L. D. Carr, Europhys. Lett., 2011, 94(5): 56002

    ADS  Google Scholar 

  123. Z. Chen and B. Wu, Phys. Rev. Lett., 2011, 107(6): 065301

    ADS  Google Scholar 

  124. See the review, W. Zawadzki and T. M. Rusin, J. Phys.: Condens. Matter, 2011, 23(14): 143201

    ADS  Google Scholar 

  125. J. Schliemann, D. Loss, and R. M. Westervelt, Phys. Rev. Lett., 2005, 94(20): 206801

    ADS  Google Scholar 

  126. M. I. Katsnelson, Eur. Phys. J. B, 2006, 51(2): 157

    MathSciNet  ADS  Google Scholar 

  127. B. Trauzettel, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev. B, 2007, 75(3): 035305

    ADS  Google Scholar 

  128. D. Lurié and S. Cremer, Physica, 1970, 50(2): 224

    ADS  Google Scholar 

  129. X. Zhang, Phys. Rev. Lett., 2008, 100(11): 113903

    ADS  Google Scholar 

  130. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett., 2010, 105(14): 143902

    ADS  Google Scholar 

  131. L. Lamata, J. León, T. Schätz, and E. Solano, Phys. Rev. Lett., 2007, 98(25): 253005

    ADS  Google Scholar 

  132. J. Y. Vaishnav and C. W. Clark, Phys. Rev. Lett., 2008, 100(15)

  133. J. J. Song and B. A. Foreman, Phys. Rev. A, 2009, 80(4): 045602

    ADS  Google Scholar 

  134. Q. Zhang, J. Gong, and C. H. Oh, Phys. Rev. A, 2010, 81(2): 023608

    ADS  Google Scholar 

  135. D. Witthaut, Phys. Rev. A, 2010, 82(3): 033602

    ADS  Google Scholar 

  136. J. Larson, J. P. Martikainen, A. Collin, and E. Sjöqvist, Phys. Rev. A, 2010, 82(4): 043620

    ADS  Google Scholar 

  137. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys., 2006, 2(9): 620

    Google Scholar 

  138. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M. Segev, and T. Pereg-Barnea, Phys. Rev. Lett., 2010, 104(6): 063901

    ADS  Google Scholar 

  139. D. Witthaut, T. Salger, S. Kling, C. Grossert, and M. Weitz, Phys. Rev. A, 2011, 84(3): 033601

    ADS  Google Scholar 

  140. T. Salger, C. Grossert, S. Kling, and M. Weitz, arXiv:condmat/1108.4447, 2011

  141. J. Otterbach, R. G. Unanyan, and M. Fleischhauer, Phys. Rev. Lett., 2009, 102(6): 063602

    ADS  Google Scholar 

  142. M. G. Tarallo, J. Miller, J. Agresti, E. D’Ambrosio, R. De-Salvo, D. Forest, B. Lagrange, J. M. Mackowsky, C. Michel, J. L. Montorio, N. Morgado, L. Pinard, A. Remilleux, B. Simoni, and P. Willems, Appl. Opt., 2007, 46(26): 6648

    ADS  Google Scholar 

  143. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Science, 2002, 296(5571): 1290

    ADS  Google Scholar 

  144. N. Dombey, P. Kennedy, and A. Calogeracos, Phys. Rev. Lett., 2000, 85(9): 1787

    ADS  Google Scholar 

  145. F. Wilczek, Nat. Phys., 2009, 5(9): 614

    MathSciNet  Google Scholar 

  146. R. F. Service, Science, 2011, 332(6026): 193

    ADS  Google Scholar 

  147. S. L. Zhu, L. B. Shao, Z. D. Wang, and L. M. Duan, Phys. Rev. Lett., 2011, 106(10): 100404

    ADS  Google Scholar 

  148. L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett., 2011, 106(22): 220402

    ADS  Google Scholar 

  149. S. Tewari and S. Das Sarma, Phys. Rev. Lett., 2007, 98(1): 010506

    ADS  Google Scholar 

  150. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys., 2008, 80(3): 1083

    ADS  MATH  Google Scholar 

  151. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys., 2011, 7(5): 412

    Google Scholar 

  152. J. Casanova, C. Sabin, J. Leon, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. Garcia-Ripoll, and E. Solano, arXiv:1102.1651, 2011

  153. J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett., 2010, 105(19): 190403

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-wei Zhang  (张丹伟).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Dw., Wang, Zd. & Zhu, Sl. Relativistic quantum effects of Dirac particles simulated by ultracold atoms. Front. Phys. 7, 31–53 (2012). https://doi.org/10.1007/s11467-011-0223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0223-y

Keywords

Navigation