Skip to main content
Log in

Additive manufacturing: technology, applications and research needs

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM. ASTM F 2792-10 standard terminology for additive manufacturing technologies

  2. Jacobs P F. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Dearborn: SME publication, 1992

    Google Scholar 

  3. Comb JW, Priedeman WR, Turley PW. FDM technology process improvements. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1994, 42–49

    Google Scholar 

  4. Beaman J J, Barlow JW, Bourell D L, Barlow JW, Crawford R H, McAlea K P. Solid Freeform Fabrication: A New Direction in Manufacturing. Norwell: Kluwer Academic Publishers, 1997, 25–49

    Book  Google Scholar 

  5. Feygin M, Hsieh B. Laminated object manufacturing (LOM): a simpler process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1991, 123–130

    Google Scholar 

  6. Sachs M E, Haggerty J S, Cima M J, Williams P A. Three dimensional printing techniques. US Patent, 5204055, 1993

    Google Scholar 

  7. Mazumder J, Schifferer A, Choi J. Direct materials deposition: designed macro and microstructure. Materials Research Innovations, 1999, 3(3): 118–131

    Article  Google Scholar 

  8. Waterman N A, Dickens P. Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1994, 1(3): 27–36

    Article  Google Scholar 

  9. Thomas C L, Gaffney TM, Kaza S, Lee C H. Rapid prototyping of large scale aerospace structures. In: Proceedings of Aerospace Applications Conference IEEE. Aspen, CO, 1996, 4: 219–230

    Google Scholar 

  10. Song Y, Yan Y, Zhang R, Xu D, Wang F. Manufacturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. Journal of Materials Processing Technology, 2002, 120(1–3): 237–242

    Article  Google Scholar 

  11. Giannatsis J, Dedoussis V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology, 2009, 40(1–2): 116–127

    Article  Google Scholar 

  12. Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–39, discussion 39–40

    Google Scholar 

  13. Pham D T, Dimov S S. Rapid prototyping and rapid tooling — the key enablers for rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(1): 1–23

    Article  Google Scholar 

  14. Onuh S O, Yusuf Y Y. Rapid prototyping technology: applications and benefits for rapid product development. Journal of Intelligent Manufacturing, 1999, 10(3/4): 301–311

    Article  Google Scholar 

  15. Goldsberry C. Rapid change in additive manufacturing landscape. http://www.plasticstoday.com/articles/rapid-change-additive-manufacturing-landscape. 2009

    Google Scholar 

  16. Kruth J P. Material increase manufacturing by rapid prototyping techniques. CIRP Annals-Manufacturing Technology, 1991, 40(2): 603–614

    Article  Google Scholar 

  17. Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufacturing Technology, 1998, 47(2): 525–540

    Article  Google Scholar 

  18. Brady A G, Halloran J W. Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 1997, 3(2): 61–65

    Article  Google Scholar 

  19. Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials, 2000, 2(8): 493–496

    Article  Google Scholar 

  20. Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. Journal of Materials Science, 2002, 37(15): 3141–3147

    Article  Google Scholar 

  21. Monneret S, Loubere V, Corbel S. Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proceedings of the Society for Photo-Instrumentation Engineers, 1999, 3680: 553–561

    Google Scholar 

  22. Sun C, Fang N, Wu D M, Zhang X. Projection microstereolighography using digital micro-mirror dynamic mask. Sensors and Actuators. A, Physical, 2005, 121(1): 113–120

    Google Scholar 

  23. Chua C K, Leong K F, Lim C S. Rapid Prototyping: Principles and Applications. 3rd ed. Singapore: World Scientific Publishing Company, 2010, 165–171

    Book  Google Scholar 

  24. Zhang W, Leu M C, Ji Z, Yan Y. Rapid freezing prototyping with water. Materials & Design, 1999, 20(2–3): 139–145

    Article  Google Scholar 

  25. Leu M C, Zhang W, Sui G. An experimental and analytical study of ice part fabrication with rapid freeze prototyping. CIRP Annals-Manufacturing Technology, 2000, 49(1): 147–150

    Article  Google Scholar 

  26. Leu M C. Rapid freeze prototyping. Materials World Journal, 2000: 9–11

    Google Scholar 

  27. Liu Q, Sui G, Leu M C. Experimental study on the ice pattern fabrication for the investment casting by rapid freeze prototyping. Computers in Industry, 2002, 48(3): 181–197

    Article  Google Scholar 

  28. Bryant F D, Sui G, Leu M C. A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyping Journal, 2003, 9(1): 19–23

    Article  Google Scholar 

  29. Crump S S. Fused deposition modeling (FDM): putting rapid back into prototyping. In: The 2nd International Conference on Rapid Prototyping. Dayton, Ohio, 1991: 354–357

    Google Scholar 

  30. Jafari M A, Han W, Mohammadi F, Safari A, Danforth S C, Langrana N. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 2000, 6(3): 161–175

    Article  Google Scholar 

  31. Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal, 2005, 11(1): 9–17

    Article  Google Scholar 

  32. Bellini A, Shor L, Guceri S I. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 2005, 11(4): 214–220

    Article  Google Scholar 

  33. Robocasting Enterprises L L C. http://www.robocasting.net/

  34. Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla R K, Tomsia A P. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. Journal of Biomedical Materials Research. Part A, 2007, 83(2): 434–445

    Article  Google Scholar 

  35. Mason M S, Huang T, Landers R G, Leu M C, Hilmas G E. Aqueous based extrusion of high solids loading ceramic pastes: process modeling and control. Journal of Materials Processing Technology, 2009, 209(6): 2946–2957

    Article  Google Scholar 

  36. Huang T, Mason M S, Hilmas G E, Leu M C. Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping Journal, 2009, 15(2): 88–95

    Article  Google Scholar 

  37. Liu H J, Leu M C. Liquid phase migration in extrusion of aqueous alumina paste for freeze-form extrusion fabrication. International Journal of Modern Physics B, 2009, 23(06n07): 1861–1866

    Article  Google Scholar 

  38. Liu H J, Leu M C. Research on extrusion velocity in freeform extrusion fabrication of aqueous alumina paste. Key Engineering Materials, 2009, 419–420: 125–128

    Article  Google Scholar 

  39. Pham D T, Dimov S, Lacan F. Selective laser sintering: applications and technological capabilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1999, 213(5): 435–449

    Article  Google Scholar 

  40. Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hot isostatic pressing. Journal of Materials, 1998, 50(12): 17–20

    Google Scholar 

  41. Kruth J P, Levy G, Klocke F, Childs T H C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals-Manufacturing Technology, 2007, 56(2): 730–759

    Article  Google Scholar 

  42. Kruth J P, Vandenbroucke B, Vaerenbergh J V, Mercelis P. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: Proceedings of International Conference Polymers & Moulds Innovations (PMI). Gent, Belgium, 2005

    Google Scholar 

  43. Kruth J P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, 11(1): 26–36

    Article  Google Scholar 

  44. Kumar S. Selective laser sintering: a qualitative and objective approach. JOM, 2003, 55(10): 43–47

    Article  Google Scholar 

  45. Levy G N, Schindel R, Kruth J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals-Manufacturing Technology, 2003, 52(2): 589–609

    Article  Google Scholar 

  46. Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1–3): 616–622

    Article  Google Scholar 

  47. Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1–3): 210–213

    Article  Google Scholar 

  48. Lu L, Fuh J, Chen Z, Leong C C, Wong Y S. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 2000, 35(9): 1555–1561

    Article  Google Scholar 

  49. Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1188–1193

    Article  Google Scholar 

  50. Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal, 2004, 10(1): 35–41

    Article  Google Scholar 

  51. Heinl P, Rottmair A, Korner C, Singer R F. Cellular titanium by selective electron beam melting. Advanced Engineering Materials, 2007, 9(5): 360–364

    Article  Google Scholar 

  52. Rännar L E, Glad A, Gustafson C G. Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping Journal, 2007, 13(3): 128–135

    Article  Google Scholar 

  53. Harrysson O, Cansizoglu O, Marcellin-Little D J, Cormier D R, West H A II. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C, 2008, 28(3): 366–373

    Article  Google Scholar 

  54. Cormier D, West H, Harrysson O, Knowlson K. Characterization of thin walled Ti-6Al-4V components produced via electron beam melting. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 2004

    Google Scholar 

  55. Heinl P, Müller L, Körner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 2008, 4(5): 1536–1544

    Article  Google Scholar 

  56. Gasser A, Backes G, Kelbassa I, Weisheit A, Wissenbach K. Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing, 2010, 2: 58–63

    Google Scholar 

  57. Balla V K, DeVasConCellos P D, Xue W, Bose S, Bandyopadhyay A. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia, 2009, 5(5): 1831–1837

    Article  Google Scholar 

  58. Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Materials & Design, 2000, 21(4): 417–423

    Article  Google Scholar 

  59. Zhang K, Liu W, Shang X. Research on the processing experiments of laser metal deposition shaping. Optics & Laser Technology, 2007, 39(3): 549–557

    Article  MathSciNet  Google Scholar 

  60. Lewis G K. Direct laser metal deposition process fabricates nearnet-shape components rapidly. Materials Technology, 1995, 10(3): 51–54

    Google Scholar 

  61. Hofmeister W, Griffith M, Ensz M, Smugeresky J. Solidification in direct metal deposition by LENS processing. JOM, 2001, 53(9): 30–34

    Article  Google Scholar 

  62. Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Fan T, Khanuja S, Lauder A, Lee J, Michaels S. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Annals-Manufacturing Technology, 1993, 42(1): 257–260

    Article  Google Scholar 

  63. Melican M C, Zimmerman M C, Dhillon M S, Ponnambalam A R, Curodeau A, Parsons J R. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. Journal of Biomedical Materials Research, 2001, 55(2): 194–202

    Article  Google Scholar 

  64. Dimitrov D, Schreve K, Beer N. Advances in three dimensional printing — state of the art and future perspectives. Rapid Prototyping Journal, 2006, 12(3): 136–147

    Article  Google Scholar 

  65. Lee M, Dunn J C, Wu B M. Scaffold fabrication by indirect threedimensional printing. Biomaterials, 2005, 26(20): 4281–4289

    Article  Google Scholar 

  66. Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr P R, Müller R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia, 2012, 8(1): 373–385

    Article  Google Scholar 

  67. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2005, 74(2): 782–788

    Article  Google Scholar 

  68. Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly form a CAD model. CIRP Annals-Manufacturing Technology, 1990, 39(1): 201–204

    Article  Google Scholar 

  69. Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation, 2003, 23(4): 340–345

    Article  MathSciNet  Google Scholar 

  70. Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry, 1999, 39(1): 47–53

    Article  Google Scholar 

  71. Prechtl M, Otto A, Geiger M. Rapid tooling by laminated object manufacturing of metal foil. Advanced Materials Research, 2005, 6–8: 303–312

    Article  Google Scholar 

  72. Park J, Tari M J, Hahn H T. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal, 2000, 6(1): 36–50

    Article  Google Scholar 

  73. Weisensel L, Travitzky N, Sieber H, Greil P. Laminated object manufacturing (LOM) of SiSiC composites. Advanced Engineering Materials, 2004, 6(11): 899–903

    Article  Google Scholar 

  74. Liao Y S, Li H C, Chiu Y Y. Study of laminated object manufacturing with separately applied heating and pressing. International Journal of Advanced Manufacturing Technology, 2006, 27(7–8): 703–707

    Article  Google Scholar 

  75. Pham D T, Gault R S. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 1998, 38(10–11): 1257–1287

    Article  Google Scholar 

  76. Griffith M L, Halloran J W. Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 1996, 79(10): 2601–2608

    Article  Google Scholar 

  77. Dufaud O, Corbel S. Stereolithography of PZT ceramic suspensions. Rapid Prototyping Journal, 2002, 8(2): 83–90

    Article  Google Scholar 

  78. Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. Journal of the European Ceramic Society, 1998, 18(6): 583–590

    Article  Google Scholar 

  79. Allahverdi M, Danforth S C, Jafari M, Safari A. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society, 2001, 21(10–11): 1485–1490

    Article  Google Scholar 

  80. Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth S C. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. Journal of the American Ceramic Society, 2000, 83(7): 1663–1669

    Article  Google Scholar 

  81. Agarwala M K, Weeren R, Bandyopadhyay A, Whalen P J, Safari A, Danforth S C. Fused deposition of ceramics and metals: an overview. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 1996

    Google Scholar 

  82. Leu M C, Pattnaik S, Hilmas G E. Optimization of selective laser sintering process for fabrication of zirconium diboride parts. In: Proceeding of International Solid Freeform Fabrication Symposium. Austin, TX, 2010

    Google Scholar 

  83. Phenix Systems. http://www.phenix-systems.com/home_en.php

  84. Guo N, Leu MC. Effect of different graphite materials on electrical conductivity and flexural strength of bipolar plates fabricated by selective laser sintering. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2010

    Google Scholar 

  85. Goodridge R D, Dalgarno K W, Wood D J. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2006, 220(1): 57–68

    Article  Google Scholar 

  86. Sun W, Dcosta D J, Lin F, El-Raghy T. Freeform fabrication of Ti3SiC2 powder-based structures, part I — integrated fabrication process. Journal of Materials Processing Technology, 2002, 127(3): 343–351

    Article  Google Scholar 

  87. Nikzad M, Masood S H, Sbarski I, Groth A. Rheological properties of a particulate-filled polymeric composite through fused deposition process. Materials Science Forum, 2010, 654–656: 2471–2474

    Article  Google Scholar 

  88. Zhong W, Li F, Zhang Z, Song L, Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering, 2001, A301: 125–130

    Google Scholar 

  89. Shofner M L, Lozano K, Rodriguez-Macias F J, Barrera E V. Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science, 2003, 89: 3081–3090

    Article  Google Scholar 

  90. Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. Journal of Materials Science. Materials in Medicine, 2009, 20(6): 1281–1289

    Article  Google Scholar 

  91. Rambo C R, Travitzky N, Zimmermann K, Greil P. Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon performs fabricated by 3D-printing. Materials Letters, 2005, 59(8–9): 1028–1031

    Article  Google Scholar 

  92. Klosterman D, Chartoff R, Graves G, Osborne N, Priore B. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part A, 1998, 29(9–10): 1165–1174

    Article  Google Scholar 

  93. Klosterman D, Chartoff R, Agarwala M, Fiscus I, Murphy J, Cullen S, Yeazell M. Direct fabrication of polymer composite structures with curved LOM. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1999: 401–409

    Google Scholar 

  94. Klosterman D A, Chartoff R P, Osborne N R, Graves G A, Lightman A, Han G, Bezeredi A, Rodrigues S. Curved layer LOM of ceramics and composites. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1998: 671–680

    Google Scholar 

  95. Kumar S, Kruth J P. Composites by rapid prototyping technology. Materials & Design, 2010, 31(2): 850–856

    Article  Google Scholar 

  96. Wiria F E, Leong K F, Chua C K, Liu Y. Poly-epsiloncaprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 2007, 3(1): 1–12

    Article  Google Scholar 

  97. Eosoly S, Lohfeld S, Brabazon D. Effect of hydroxyapatite on biodegradable scaffolds fabricated by SLS. Key Engineering Materials, 2009, 396–398: 659–662

    Article  Google Scholar 

  98. Leong C C, Lu L, Fuh J Y H, Wong Y S. In-situ formation of copper matrix composites by laser sintering. Materials Science and Engineering A, 2002, 338(1–2): 81–88

    Article  Google Scholar 

  99. Evans R S, Bourell D L, Beaman J J, Campbell M I. Rapid manufacturing of silicon carbide composites. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2004

    Google Scholar 

  100. Stevinson B Y, Bourell D L, Beaman J J. Over-infiltration mechanisms in selective laser sintered Si/SiC preforms. Rapid Prototyping Journal, 2008, 14(3): 149–154

    Article  Google Scholar 

  101. Bandyopadhyay A, Krishna B V, Xue W, Bose S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. Journal of Materials Science. Materials in Medicine, 2009, 20(S1 Suppl 1): 29–34

    Article  Google Scholar 

  102. Vamsi Krishna B, Xue W, Bose S, Bandyopadhyay A. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. Acta Biomaterialia, 2008, 4(3): 697–706

    Article  Google Scholar 

  103. Liu W, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Materialia, 2003, 48(9): 1337–1342

    Article  Google Scholar 

  104. Domack M S, Baughman J M. Development of nickel-titanium graded composition components. Rapid Prototyping Journal, 2005, 11(1): 41–51

    Article  Google Scholar 

  105. Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire. Materials & Design, 2007, 28(7): 2040–2046

    Article  Google Scholar 

  106. Leu M C, Tang L, Deuser B, Landers R G, Hilmas G E, Zhang S, Watts J. Freeze-form extrusion fabrication of composite structures. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011, 111–124

    Google Scholar 

  107. Caulfield B, McHugh P E, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology, 2007, 182(1–3): 477–488

    Article  Google Scholar 

  108. Zarringhalam H, Majewski C, Hopkinson N. Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyping Journal, 2009, 15(2): 126–132

    Article  Google Scholar 

  109. Ahn S H, Montero M, Odell D, Roundy S, Wright P K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002, 8(4): 248–257

    Article  Google Scholar 

  110. Lam C X F, Mo X M, Teoh S H, Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20(1–2): 49–56

    Article  Google Scholar 

  111. Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. Annals- Manufacturing Technology, 2007, 56(1): 205–208

    Article  Google Scholar 

  112. Leong K F, Wiria F E, Chua C K, Li S H. Characterization of a poly-ɛ-caprolactone polymeric drug delivery device built by selective laser sintering. Bio-Medical Materials and Engineering, 2007, 17(3): 147–157

    Google Scholar 

  113. Ramanath H S, Chua C K, Leong K F, Shah K D. Melt flow behaviour of poly-ɛ-caprolactone in fused deposition modelling. Journal of Materials Science. Materials in Medicine, 2008, 19(7): 2541–2550

    Article  Google Scholar 

  114. Ramanath H S, Chandrasekaran M, Chua C K, Leong K F, Shah K D. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. Key Engineering Materials, 2007, 334–335: 1241–1244

    Article  Google Scholar 

  115. Cheah C M, Chua C K, Lee C W, Feng C, Totong K. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology, 2005, 25(3–4): 308–320

    Article  Google Scholar 

  116. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, 1(1): 26–36

    Article  Google Scholar 

  117. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Postprocessing of selective laser sintered metal parts. Rapid Prototyping Journal, 1995, 1(2): 36–44

    Article  Google Scholar 

  118. Allen S M, Sachs E M. Three-dimensional printing of metal parts for tooling and other applications. Metals and Materials, 2000, 6(6): 589–594

    Article  Google Scholar 

  119. Clarinval A M, Carrus R, Dormal T, Soyeur Q. Fabrication of stainless steel and ceramic parts with the Optoform process. Advanced Research inVirtual and Rapid Manufacturing. London: Taylor & Francis Group, 2007: 415–418

    Google Scholar 

  120. Xue L, Purcell C. Laser consolidation of net-shape shells for flextensional sonar projectors. In: Proceedings of ICALEO. Scottsdale, AZ, 2006

    Google Scholar 

  121. Strondl A, Palm M, Gnauk J, Frommeyer G. Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology, 2011, 27(5): 876–883

    Article  Google Scholar 

  122. Mudge R P, Wald N R. Laser engineered net shaping advances additive manufacturing and repair. Welding Journal-New York, 2007, 86(1): 44–48

    Google Scholar 

  123. MTT Technologies Group. MTT selective laser melting. 2009

    Google Scholar 

  124. Arcam A B. http://www.arcam.com

  125. Otubo J, Antunes A S. Characterization of 150 mm in diameter NiTi SMA ingot produced by electron beam melting. Materials Science Forum, 2010, 643: 55–59

    Article  Google Scholar 

  126. Sachs E, Cima M, Bredt J. CAD-casting: direct fabrication of ceramic shells and cores by three-dimensional printing. Manufacturing Review (USA), 1992, 5(2): 117–126

    Google Scholar 

  127. Rudraraju A, Deptowicz D, Das S. Strategies for fabricating nextgeneration multifunctional airfoil designs through LAMP. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2011

    Google Scholar 

  128. Yuan D, Kambly K, Shao P, Rudraraju A, Cilio P, Tomeckoa V, Torres C, Halloran J W, Das S. Experimental investigations on a photocurable ceramic material system for large area maskless photolymerization. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2009

    Google Scholar 

  129. Z Corporation. 3DP Consumables Catalog. 2010

    Google Scholar 

  130. Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51–57

    Article  Google Scholar 

  131. Balla V K, Bose S, Bandyopadhyay A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234–242

    Article  Google Scholar 

  132. Jackson T R, Liu H, Patrikalakis N M, Sachs E M, Cima M J. Modelling and designing functionally graded material components for fabrication with local composition control. Materials & Design, 1999, 20(2–3): 63–75

    Article  Google Scholar 

  133. Optomec. http://www.optomec.com/

  134. Concept Laser Gmb H. http://www.concept-laser.de/

  135. Morris Technologies. http://www.morristech.com/

  136. Prometal R C T. http://www.prometal-rct.com/

  137. Hedges M, Calder N. Near net shape rapid manufacture & repair by LENS. In: Cost Effective Manufacture via Net-shape Processing. Neuilly-sur-Seine, France, 2006, 13-1–4

    Google Scholar 

  138. Kelbassa I, Gasser A, Wissenbach K. Laser cladding as a repair technique for blisks out of titanium and nickel based alloys used in aero engines. In: Proceedings of the 1st Pacific International Conference on Application of Lasers and Optics. Melbourne, 2004

    Google Scholar 

  139. Xue L, Islam M U. Laser consolidation-a novel one-step manufacturing process for making net-shape functional components. In: Cost Effective Manufacturing via Net-Shape Processing. Neuilly-sur-Seine, France, 2006, 15-1–4

    Google Scholar 

  140. Richter K H, Orban S, Nowotny S. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics. 2004

    Google Scholar 

  141. Qi H, Azer M, Singh P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. International Journal of Advanced Manufacturing Technology, 2010, 48(1–4): 121–131

    Article  Google Scholar 

  142. Liou F, Slattery K, Kinsella M, Newkirk J, Chou H N, Landers R. Applications of a hybrid manufacturing process for fabrication of metallic structures. Rapid Prototyping Journal, 2007, 13(4): 236–244

    Article  Google Scholar 

  143. Liou F W, Choi J, Landers R G, Janardhan V, Balakrishnan S N, Agarwal S. Research and development of a hybrid rapid manufacturing process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2001

    Google Scholar 

  144. Ren L, Padathu A P, Ruan J, Sparks T, Liou F W. Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2006

    Google Scholar 

  145. Bae C J. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography. Dissertation for Doctor Degree. University of Michigan, 2008

    Google Scholar 

  146. Wu H, Li D, Guo N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography. Rapid Prototyping Journal, 2009, 15(4): 232–237

    Article  Google Scholar 

  147. Wu H, Li D, Tang Y, Guo N, Sun B, Xu D. Rapid casting of hollow turbine blade using integral ceramic moulds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 695–702

    Article  Google Scholar 

  148. Murr L E, Gaytan S M, Medina F, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Wicker R B. Characterization of Ti6Al4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A, 2010, 527(7–8): 1861–1868

    Article  Google Scholar 

  149. Gaytan S, Murr L, Medina F, Martinez E, Martinez L, Wicker R. Fabrication and characterization of reticulated, porous mesh arrays and foams for aerospace applications by additive manufacturing using electron beam melting. In: Proceedings of Minerals, Metals and Materials Society/AIME. Warrendale PA, 2010

    Google Scholar 

  150. Daneshmand S, Adelnia R, Aghanajafi S. Design and production of wind tunnel testing models with selective laser sintering technology using glass-reinforced Nylon. Materials Science Forum, 2006, 532–533: 653–656

    Article  Google Scholar 

  151. Technology CRP. http://www.crptechnology.com

  152. Vilaro T, Abed S, Knapp W.Direct manufacturing of technical parts using selective laser melting: example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping. 2008

    Google Scholar 

  153. Rosochowski A, Matuszak A. Rapid tooling: the state of the art. Journal of Materials Processing Technology, 2000, 106(1–3): 191–198

    Article  Google Scholar 

  154. Bassoli E, Gatto A, Iuliano L, Violante MG. 3D printing technique applied to rapid casting. Rapid Prototyping Journal, 2007, 13(3): 148–155

    Article  Google Scholar 

  155. Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Medina F, Collins S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 2010, 58(5): 1887–1894

    Article  Google Scholar 

  156. Ilardo R, Williams C B. Design and manufacture of a formula SAE intake system using fused deposition modeling and fiber-reinforced composite materials. Rapid Prototyping Journal, 2010, 16(3): 174–179

    Article  Google Scholar 

  157. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010, 2(4): 045004

    Article  Google Scholar 

  158. Adler Ortho Group. http://www.alaortho.com/indBigEng.htm. Accessed in 2010

  159. Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. International Journal of Advanced Manufacturing Technology, 2006, 29(3–4): 317–335

    Article  Google Scholar 

  160. Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metal for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007, 13(4): 196–203

    Article  Google Scholar 

  161. Peltola S M, Melchels F P, Grijpma D W, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40(4): 268–280

    Article  Google Scholar 

  162. Cooke M N, Fisher J P, Dean D, Rimnac C, Mikos A G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials, 2003, 64(2): 65–69

    Article  Google Scholar 

  163. Kolan K C, Leu M C, Hilmas G E, Velez M. Selective laser sintering of 13–93 bioactive glass. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2010

    Google Scholar 

  164. Liu Y F, Dong X T, Zhu F D. Overview of rapid prototyping for fabrication of bone tissue engineering scaffold. Advanced Materials Research, 2010, 102–104: 550–554

    Article  Google Scholar 

  165. Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413–3431

    Article  Google Scholar 

  166. Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130

    Article  Google Scholar 

  167. Chim H, Hutmacher DW, Chou A M, Oliveira A L, Reis R L, Lim T C, Schantz J T. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery, 2006, 35(10): 928–934

    Article  Google Scholar 

  168. Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23(4): 1169–1185

    Article  Google Scholar 

  169. Lorrison J C, Goodridge R D, Dalgarno KW, Wood D J. Selective laser sintering of bioactive glass-ceramics. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2002

    Google Scholar 

  170. Weinand C, Pomerantseva I, Neville C M, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis M J, Vacanti J P. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone, 2006, 38(4): 555–563

    Article  Google Scholar 

  171. Williams JM, Adewunmi A, Schek RM, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005, 26(23): 4817–4827

    Article  Google Scholar 

  172. Tan K H, Chua C K, Leong K F, Cheah CM, Cheang P, Abu Bakar M S, Cha S W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003, 24(18): 3115–3123

    Article  Google Scholar 

  173. Arcaute K, Mann B K, Wicker R B. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering, 2006, 34 (9): 1429–1441

    Article  Google Scholar 

  174. Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering, 2004, 10(9–10): 1316–1322

    Google Scholar 

  175. Dellinger J G, Eurell J A C, Stewart M, Jamison R D. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. Journal of Biomedical Materials Research. Part A, 2006, 76(2): 366–376

    Article  Google Scholar 

  176. Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 2009, 1(1): 015003

    Article  Google Scholar 

  177. Kolan K C, Doiphode N D, Leu M C. Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13–93 bioactive glass: a comparison. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, Texas, 2010

    Google Scholar 

  178. Kolan K C, Leu M C, Hilmas G E, Brown R F, Velez M. Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3(2): 025004

    Article  Google Scholar 

  179. Lin L, Ju S, Cen L, Zhang H, Hu Q. Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. IFMBE Proceedings, 2008, 19(4): 88–91

    Article  Google Scholar 

  180. Chen Z, Li D, Lu B, Tang Y, Sun M, Wang Z. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyping Journal, 2004, 10(5): 327–333

    Article  Google Scholar 

  181. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 2009, 1(2): 022001

    Article  Google Scholar 

  182. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30(31): 6221–6227

    Article  Google Scholar 

  183. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnology Journal, 2006, 1(9): 910–917

    Article  Google Scholar 

  184. Wilson W C Jr, Boland T. Cell and organ printing 1: protein and cell printers. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 491–496

    Google Scholar 

  185. Boland T, Mironov V, Gutowska A, Roth E A, Markwald R R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 497–502

    Google Scholar 

  186. Mironov V, Boland T, Trusk T, Forgacs G, Markwald R R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21(4): 157–161

    Article  Google Scholar 

  187. U.S. Department of Energy. Future fuel cells R&D. http://www.fossil.energy.gov/programs/powersystems/fuelcells/. Accessed in 2010

  188. Chen S, Bourell D L, Wood K L. Fabrication of PEM fuel cell bipolar plates by indirect SLS. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2004, 244–256

    Google Scholar 

  189. Chen S, Murphy J, Herlehy J, Bourell D L, Wood K L. Development of SLS fuel cell current collectors. Rapid Prototyping Journal, 2006, 12(5): 275–282

    Article  Google Scholar 

  190. Alayavalli K, Bourell D L. Fabrication of electrically conductive, fluid impermeable direct methanol fuel cell (DMFC) graphite bipolar plates by indirect selective laser sintering (SLS). In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2008, 186–193

    Google Scholar 

  191. Alayavalli K, Bourell D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells. Rapid Prototyping Journal, 2010, 16(4): 268–274

    Article  Google Scholar 

  192. Guo N, Leu M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy, 2012, 37(4): 3558–3566

    Article  Google Scholar 

  193. Bourell D L, Leu M C, Chakravarthy K, Guo N, Alayavalli K. Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Annals-Manufacturing Technology, 2011, 60(1): 275–278

    Article  Google Scholar 

  194. Guo N, Leu M C. Experimental study of polymer electrolyte membrane fuel cells using a graphite composite bipolar plate fabricated by selective laser sintering. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2012

    Google Scholar 

  195. Guo N, Leu M C, Wu M. Bio-inspired design of bipolar plate flow fields for polymer electrolyte membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011

    Google Scholar 

  196. Wu M, Leu M C, Guo N. Simulation and testing of polymer electrolyte membrane fuel cell bipolar plates fabricated by selective laser sintering. In: Proceedings of ASME 2012 International Symposium on Flexible Automation. St. Louis, MO, 2012

    Google Scholar 

  197. Taghipour E, Leu M C, Guo N. Comparison of compression molding and selective laser sintering processes in the development of composite bipolar plates for proton exchange membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2012

    Google Scholar 

  198. Bourell D L, Leu M C, Rosen D W. Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, Laboratory for Freeform Fabrication. Austin, TX, 2009, 7–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming C. Leu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, N., Leu, M.C. Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8, 215–243 (2013). https://doi.org/10.1007/s11465-013-0248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-013-0248-8

Keywords

Navigation