Skip to main content
Log in

Investigating the possibility of a turning point in the dark energy equation of state

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate a second order parabolic parametrization, w(a) = w t + w a (a t a)2, which is a direct characterization of a possible turning in w. The cosmological consequence of this parametrization is explored by using the observational data of the SNLS3 type Ia supernovae sample, the CMB measurements from WMAP9 and Planck, the Hubble parameter measurement from HST, and the baryon acoustic oscillation (BAO) measurements from 6dFGS, BOSS DR11 and improved WiggleZ. We found the existence of a turning point in w at a ∼ 0.7 is favored at 1σ CL. In the epoch 0.55 < a < 0.9, w < −1 is favored at 1σ CL, and this significance increases near a = 0.8, reaching a 2σ CL. The parabolic parametrization achieve equivalent performance to the ΛCDM and Chevallier-Polarski-Linder (CPL) models when the Akaike information criterion was used to assess them. Our analysis shows the value of considering high order parametrizations when studying the cosmological constraints on w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess A G, Filippenko A V, Challis P, et al. Observational evidence from suprenovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009–1038

    Article  ADS  Google Scholar 

  2. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J, 1999, 517: 565–586

    Article  ADS  Google Scholar 

  3. Sahni V, Starobinsky A. The case for a positive cosmological lambdaterm. Int J Mod Phys D, 2000, 9: 373–444

    ADS  Google Scholar 

  4. Peebles P J E, Ratra B. The cosmological constant and dark energy. Rev Mod Phys, 2003, 75: 559

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Frieman J, Turner M, Huterer D. Dark energy and the accelerating universe. Annu Rev Astron Astrophys, 2008, 46: 385–432

    Article  ADS  Google Scholar 

  6. Li M, Li X D, Wang S, et al. Dark Energy. Commun Theor Phys, 2011, 56: 525–604

    Article  MATH  ADS  Google Scholar 

  7. Peebles P J E, Yu J T. Primeval adiabatic perturbation in an expanding universe. Astrophys J, 1970, 162: 815–836

    Article  ADS  Google Scholar 

  8. Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605–614

    Article  ADS  Google Scholar 

  9. Anderson L, Aubourg E, Bailey S, et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the data release 10 and 11 galaxy samples. arXiv:1312.4877

  10. Kazin E A, Koda J, Blake C, et al. Improved WiggleZ dark energy survey distance measurements to z = 1 with reconstruction of the baryonic acoustic feature. arXiv:1401.0358

  11. Eisenstein D J, Seo H J, Sirko E, et al. Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys J, 2007, 664: 675–679

    Article  ADS  Google Scholar 

  12. Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213–224

    Article  ADS  Google Scholar 

  13. Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301

    Article  ADS  Google Scholar 

  14. Barreiro T, Copeland E J, Nunes N J. Quintessence arising from exponential potentials. Phys Rev D, 2000, 61: 127301

    Article  ADS  Google Scholar 

  15. Hu W, Sawicki I. Models of f (R) cosmic acceleration that evade solar system tests. Phys Rev D, 2007, 76: 064004

    Article  ADS  Google Scholar 

  16. Starobinsky A A. Disappearing cosmological constant in f (R) gravity. JETP Lett, 2007, 86: 157–163

    Article  ADS  Google Scholar 

  17. Appleby S A, Battye R A. Do consistent F(R) models mimic general relativity plus Λ? Phys Lett B, 2007, 654: 7–12

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Baldi M. Early massive clusters and the bouncing coupled dark energy. Mon Not R Astron Soc, 2012, 420: 430–440

    Article  ADS  Google Scholar 

  19. Li M, Ma Y Z, Zhang X, et al. Planck constraints on holographic dark energy. J Cosmol Astropart Phys, 2013, 09: 021

    Article  MathSciNet  ADS  Google Scholar 

  20. Alam U, Sahni V, Saini T D, et al. Is there supernova evidence for dark energy metamorphosis? Mon Not R Astron Soc, 2004, 354: 275–291

    Article  ADS  Google Scholar 

  21. Zhao G B, Crittenden R G, Pogosian L, et al. Examining the evidence for dynamical dark energy. Phys Rev Lett, 2012, 109: 171301

    Article  ADS  Google Scholar 

  22. Holsclaw T, Alam U, Sansó B, et al. Nonparametric dark energy reconstruction from supernova data. Phys Rev Lett, 2010, 105: 241302

    Article  ADS  Google Scholar 

  23. Shafieloo A, Kim A G, Linder E V. Gaussian process cosmography. Phys Rev D, 2012, 85: 123530

    Article  ADS  Google Scholar 

  24. Seikel M, Clarkson C, Smith M. Reconstruction of dark energy and expansion dynamics using Gaussian processes. J Cosmol Astropart Phys, 2012, 1206: 036

    Article  ADS  Google Scholar 

  25. Crittenden R G, Zhao G B, Pogosian L, et al. Fables of reconstruction: Controlling bias in the dark energy equation of state. J Cosmol Astropart Phys, 1202, 2012: 048

    Article  ADS  Google Scholar 

  26. Wang F Y, Dai Z G. Estimating the uncorrelated dark energy evolution in the Planck era. Phys Rev D, 2014, 89: 023004

    Article  ADS  Google Scholar 

  27. Linder E V, Huterer D. How many dark energy parameters? Phys Rev D, 2005, 72: 043509

    Article  ADS  Google Scholar 

  28. Sarkar D, Sullivan S, Joudaki S, et al. Beyond two dark energy parameters. Phys Rev Lett, 2008, 100: 241302

    Article  ADS  Google Scholar 

  29. Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18–64

    Article  ADS  Google Scholar 

  30. Guy J, Sullivan M, Conley A, et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints. Astron Astrophys, 2010, 523: A7

    Article  ADS  Google Scholar 

  31. Sullivan M, Guy J, Conley A, et al. SNLS3: Constraints on dark energy combining the supernova legacy survey three-year data with other probes. Astrophys J, 2011, 737: 102

    Article  ADS  Google Scholar 

  32. Conley A, Sullivan M, Hsiao E Y, et al. SiFTO: An empirical method for fitting SN Ia light curves. Astrophys J, 2008, 681: 482–498

    Article  ADS  Google Scholar 

  33. Guy J, Astier P, Baumont S, et al. SALT2: Using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron Astrophys, 2007, 466: 11–21

    Article  ADS  Google Scholar 

  34. Zhang Z H, Li M, Li X D, et al. Generalized holographic dark energy and its observational constraints. Mod Phys Lett A, 2012, 27: 1250115

    Article  ADS  Google Scholar 

  35. Hinshaw G, Larson D, Komatsu E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl, 2013, 208: 19

    Article  ADS  Google Scholar 

  36. Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062

  37. Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076

  38. Wang Y, Wang S. Distance priors from Planck and dark energy constraints from current data. Phys Rev D, 2013, 88: 043522

    Article  ADS  Google Scholar 

  39. Hu W, Sugiyama N. Small-scale cosmological perturbations: An analytic approach. Astrophys J, 1996, 471: 542–570

    Article  ADS  Google Scholar 

  40. Beutler F, Blake C, Colless M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017–3032

    Article  ADS  Google Scholar 

  41. Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560–574

    Article  ADS  Google Scholar 

  42. Addison G E, Hinshaw G, Halpern M. Cosmological constraints from baryon acoustic oscillations and clustering of large-scale structure. Mon Not R Astron Soc, 2013, 436: 1674–1683

    Article  ADS  Google Scholar 

  43. Padmanabhan N, Xu X Y, Eisenstein D J, et al. A 2% distance to z = 0.35 by reconstructing baryon acoustic oscillations—I: Methods and application to the Sloan Digital Sky Survey. Mon Not R Astron Soc, 2012, 427: 2132–2145

    Article  ADS  Google Scholar 

  44. Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys J, 2011, 730: 119

    Article  ADS  Google Scholar 

  45. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511

    Article  ADS  Google Scholar 

  46. Felice A D, Nesseris S, Tsujikawa S. Observational constraints on dark energy with a fast varying equation of state. J Cosmol Astropart Phys, 2012, 1205: 029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Li.

Additional information

Contributed by LI Miao (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, M., Li, X. et al. Investigating the possibility of a turning point in the dark energy equation of state. Sci. China Phys. Mech. Astron. 57, 1607–1612 (2014). https://doi.org/10.1007/s11433-014-5497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5497-y

Keywords

Navigation