Skip to main content
Log in

Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland

  • SOILS, SEC 5 • SOIL AND LANDSCAPE ECOLOGY • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Global nitrogen deposition has profound impact on the terrestrial ecosystem including the semiarid temperate grassland, causing vegetation community shifts and soil acidification. Little is known regarding the effect of nitrogen (N) deposition on the belowground microbial communities. This study aimed to examine the response of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to added N in semiarid temperate grassland.

Materials and methods

We studied the changes of AOB and AOA by using molecular techniques targeting amoA genes along a urea fertilization gradient, i.e., 0, 1, 2, 4, 8, 16, 32, 64 g N m−2 year−1, in a 6-year field experiment of semiarid temperate grassland, Inner Mongolia of China.

Results and discussion

AOB community responded to urea–N substrate clearly, and N addition rates 2–4 g N m−2 year−1 induced an increase in its abundances and the shift of its composition. However, AOA community remained unchanged and the highest N loading at 64 g N m−2 year−1 even decreased its abundance. Moreover, higher N loading rates (more than 16 g N m−2 year−1) significantly decreased the diversity of AOB but not AOA, as indicated by the decrease of its Shannon and Evenness indices.

Conclusions

The relative long-term nitrogen loading of more than 2–4 g N m−2 year−1 resulted in diversity loss of AOB in this semiarid temperate grassland. Increasing N loading altered AOB abundance and composition, but AOA showed nonsignificant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Avrahami S, Conrad R (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69:6152–6164

    Article  CAS  Google Scholar 

  • Avrahami S, Conrad R, Braker G (2002) Effect of ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    Article  CAS  Google Scholar 

  • Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2010) Ammonia oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. P Natl Acad Sci USA 102:14683–14688

    Article  CAS  Google Scholar 

  • Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13

    Article  CAS  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. P Natl Acad Sci USA 105:2134–2139

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. P Natl Acad Sci USA 101:15136–15141

    Article  CAS  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69:5060–5069

    Article  CAS  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–U234

    Article  CAS  Google Scholar 

  • McAndrew DW, Malhi SS (1992) Long-term N fertilization of a solonetzic soil—effects on chemical and biological properties. Soil Biol Biochem 24:619–623

    Article  Google Scholar 

  • Mendum TA, Sockett RE, Hirsch PR (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65:4155–4162

    CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  CAS  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  Google Scholar 

  • Niu SL, Wan SQ (2008) Warming changes plant competitive hierarchy in a temperate steppe in northern China. J Plant Ecol 1:103–110

    Article  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Schleper C (2010) Ammonia oxidation: different niches for bacteria and archaea. JSME J 4:1092–1094

    Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  Google Scholar 

  • Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops JMH (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  Google Scholar 

  • Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    Article  CAS  Google Scholar 

  • Yu ZY, Zeng DH, Jiang FQ, Zhao Q (2009) Responses of biomass to the addition of water, nitrogen and phosphorus in Keerqin sandy grassland, Inner Mongolia, China. J For Res 20:23–26

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng LX, Liu XJ, Jickells T, Cape JN, Goulding K, Fangmeier A, Zhang FS (2008) Evidence for organic N deposition and its anthropogenic sources in China. Atmos Environ 42:1035–1041

    Article  CAS  Google Scholar 

  • Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217

    Article  CAS  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. P Natl Acad Sci USA 107:17240–17245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (41020114001, 41025004 and 40871129) and the Chinese Academy of Sciences (KZCX2-YW-JC401). We are grateful to the Duolun Restoration Ecological Experimentation and Demonstration Station for access to the study sites and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Mei Zhang or Ji-Zheng He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, XY., Zhang, LM., Shen, JP. et al. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. J Soils Sediments 11, 1243–1252 (2011). https://doi.org/10.1007/s11368-011-0375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0375-y

Keywords

Navigation