Skip to main content

Advertisement

Log in

The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

We investigated the anti-aging effects of Ludwigia octovalvis (Jacq.) P. H. Raven (Onagraceae), an extract of which is widely consumed as a healthful drink in a number of countries. Using the fruit fly, Drosophila melanogaster, as a model organism, we demonstrated that L. octovalvis extract (LOE) significantly extended fly lifespan on a high, but not a low, calorie diet, indicating that LOE may regulate lifespan through a dietary restriction (DR)-related pathway. LOE also attenuated age-related cognitive decline in both flies and in the senescence-accelerated-prone 8 (SAMP8) mouse, without causing any discernable negative trade-offs, including water intake, food intake, fecundity, or spontaneous motor activity. LOE contained high levels of polyphenols and flavonoids, which possess strong DPPH radical scavenging activity, and was shown to attenuate paraquat-induced oxidative damage and lethality in flies. Gas chromatography–mass spectrometry (GC-MS) analyses identified 17 known molecules, of which β-sitosterol and squalene were the two most abundant. We further demonstrated that β-sitosterol was capable of extending lifespan, likely through activating AMP-activated protein kinase (AMPK) in the fat body of adult flies. Taken together, our data suggest that LOE is a potent anti-aging intervention with potential for treating age-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcedo J, Kenyon C (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Anisimov V, Semenchenko A, Yashin A (2003) Insulin and longevity: antidiabetic biguanides as geroprotectors. Biogerontology 4(5):297–307

    Article  CAS  PubMed  Google Scholar 

  • Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686):1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Bauer JH, Goupil S, Garber GB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(35):12980–12985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  CAS  PubMed  Google Scholar 

  • Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103(20):7901–7905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, Kern B, Zou S (2011) Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 50(11):1669–1678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  • Buchowski MS, Hongu N, Acra S, Wang L, Warolin J, Roberts LJ II (2012) Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS ONE 7(10):e47079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buddhan S, Sivakumar R, Dhandapani N, Ganesan B, Anandan R (2007) Protective effect of dietary squalene supplementation on mitochondrial function in liver of aged rats. Prostaglandins Leukot Essent Fatty Acids 76(6):349–355

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Hosoda K, Tsai CJ, Yamamoto S, Wang MF (2006) Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 52(4):266–273

    Article  CAS  Google Scholar 

  • Chang CI, Kuo CC, Chang JY, Kuo YH (2004) Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines. J Nat Prod 67(1):91–93

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Lin CC, Namba T (1989) Screening of Taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J Ethnopharmacol 27(3):285–295

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Kim D (2000) Effects of age and dietary restriction on lifespan and oxidative stress of SAMP8 mice with learning and memory impairments. J Nutr Health Aging 4(3):182–186

    CAS  PubMed  Google Scholar 

  • Chou H-J, Lai D-M, Huang C-W, McLennan IS, Wang H-D, Wang P-Y (2013) BMP4 is a peripherally-derived factor for motor neurons and attenuates glutamate-induced excitotoxicity in vitro. PLoS ONE 8(3):e58441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Morales SE, García-Saldívar NL, González-López MR, Castillo-Roberto G, Monroy J, Domínguez R (2008) Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum. Behav Brain Res 195(1):187–191

    Article  CAS  PubMed  Google Scholar 

  • De-Mello N, Carobrez AP (2002) Elevated T-maze as an animal model of memory: effects of scopolamine. Behav Pharmacol 13(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Flatt T, Min K-J, D'Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105(17):6368–6373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flood JF, Morley JE (1992) Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse. J Gerontol 47(2):B52–B59

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Morley JE (1993) Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse (SAM). Neurobiol Aging 14(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • Galleano M, Verstraeten SV, Oteiza PI, Fraga CG (2010) Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 501(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  PubMed  Google Scholar 

  • Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, SY E, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJY, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339(6124):1216–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram DK, Anson RM, De Cabo R, Mamczarz J, Zhu MIN, Mattison J, Lane MA, Roth GS (2004) Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci 1019(1):412–423

    Article  CAS  PubMed  Google Scholar 

  • Kadum Yakob H, Manaf Uyub A, Fariza Sulaiman S (2012) Toxicological evaluation of 80% methanol extract of Ludwigia octovalvis (Jacq.) P.H. Raven leaves (Onagraceae) in BALB/c mice. J Ethnopharmacol 142(3):663–668

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Lane MA, Ingram DK, Roth GS (1998) 2-Deoxy-d-glucose feeding in rats mimics physiologic effects of calorie restriction. J Anti Aging Med 1(4):327–337

    Article  CAS  Google Scholar 

  • Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13(5):561–570

    Article  CAS  PubMed  Google Scholar 

  • Lin S-J, Defossez P-A, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Lin S-J, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103(6):1768–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maia CSF, Ferreira VMM, Diniz JSV, Carneiro FP, de Sousa JB, da Costa ET, Tomaz C (2010) Inhibitory avoidance acquisition in adult rats exposed to a combination of ethanol and methylmercury during central nervous system development. Behav Brain Res 211(2):191–197

    Article  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y, Takeda T (1986) Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav 38(3):399–406

    Article  CAS  PubMed  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317

    Article  CAS  PubMed  Google Scholar 

  • Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng C, Chan HYE, Huang Y, Yu H, Chen Z-Y (2011) Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem 59(5):2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667

    Article  CAS  PubMed  Google Scholar 

  • Santos P, Bittencourt AS, Schenberg LC, Carobrez AP (2006) Elevated T-maze evaluation of anxiety and memory effects of NMDA/glycine-B site ligands injected into the dorsal periaqueductal gray matter and the superior colliculus of rats. Neuropharmacology 51(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Schriner SE, Abrahamyan A, Avanessian A, Bussel I, Maler S, Gazarian M, Holmbeck MA, Jafari M (2009) Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea. Free Radic Res 43(9):836–843

    Article  CAS  PubMed  Google Scholar 

  • Schriner SE, Lee K, Truong S, Salvadora KT, Maler S, Nam A, Lee T, Jafari M (2013) Extension of Drosophila lifespan by Rhodiola rosea through a mechanism independent from dietary restriction. PLoS ONE 8(5):e63886

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293

    Article  CAS  PubMed  Google Scholar 

  • Shih P-H, Chan Y-C, Liao J-W, Wang M-F, Yen G-C (2010) Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer's disease. J Nutr Biochem 21(7):598–605

    Article  CAS  PubMed  Google Scholar 

  • Simons MJP, Koch W, Verhulst S (2013) Dietary restriction of rodents decreases aging rate without affecting initial mortality rate—a meta-analysis. Aging Cell 12(3):410–414

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9):987–1002

    Article  CAS  PubMed  Google Scholar 

  • Slack C, Foley A, Partridge L (2012) Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS ONE 7(10):e47699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28(1):49–55

    CAS  Google Scholar 

  • Soh J-W, Marowsky N, Nichols TJ, Rahman AM, Miah T, Sarao P, Khasawneh R, Unnikrishnan A, Heydari AR, Silver RB, Arking R (2013) Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp Gerontol 48(2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Buchan PB (1981) Relationship between physical activity and life span in the adult housefly, Musca domestica. Exp Gerontol 16(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Stenesen D, Suh JM, Seo J, Yu K, Lee K-S, Kim J-S, Min K-J, Graff JM (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17(1):101–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi RN, Pamplona FA, Fernandes MS (2005) The cannabinoid antagonist SR141716A facilitates memory acquisition and consolidation in the mouse elevated T-maze. Neurosci Lett 380(3):270–275

    Article  CAS  PubMed  Google Scholar 

  • Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34(4):639–659

    Article  CAS  PubMed  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16(3):296–300

    Article  CAS  PubMed  Google Scholar 

  • Vivancos M, Moreno JJ (2005) Beta-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Wang P-Y, Koishi K, McGeachie AB, Kimber M, MacLaughlin DT, Donahoe PK, McLennan IS (2005) Mullerian inhibiting substance acts as a motor neuron survival factor in vitro. Proc Natl Acad Sci U S A 102(45):16421–16425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P-Y, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A 106(23):9262–9267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weindruch R, Walford R (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215(4538):1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Liu SQ, Huang D (2013) Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS ONE 8(5):e64448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 14(12):1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Mutcherson R, Helfand SL (2005) Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging Cell 4(4):209–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Chuan-Hao Lai and Hao-Wei Wang (Hsiehyu Biotech Company Ltd.) and Shang-Tse Lee (National Taiwan University) for the technical assistance. We would like to thank Fly Core in Taiwan for the fly stocks and reagents. Pei-Yu Wang is partially supported by the National Science Council (NSC 98-2320-B-004-003-MY2 and NSC 100-2311-B-002-017-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yu Wang.

Additional information

Wei-Sheng Lin and Jun-Yi Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Reduced expression of AMPK-α mRNA caused by expression of the RNAi element. qPCR detection of mRNA expression levels of AMPK-α in 10-day old flies carrying fat body GeneSwitch driver S106 and UAS-AMPK.RNAi, on food containing 0 μg/ml (control) and 86 μg/ml RU486(RU). Data are presented as mean ± SEM. Experiments were done in triplicates and each sample contained more than 30 flies. *, P < 0.05, compared to control group using Student's t test. (JPEG 1898 kb)

High resolution image (EPS 372 kb)

About this article

Cite this article

Lin, WS., Chen, JY., Wang, JC. et al. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. AGE 36, 689–703 (2014). https://doi.org/10.1007/s11357-013-9606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9606-z

Keywords

Navigation