Skip to main content
Log in

Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation

  • Recent sediments: environmental chemistry, ecotoxicology and engineering
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g−1 dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60–93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100–103 cm depth, THP constituted 80 % of biogenic PAH and at 120–123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river’s watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrajano TA, Yan B, O’Malley V (2003) High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. Treatise in Geochemistry 9:475–509

    Google Scholar 

  • Aizenshtat Z (1973) Perylene and its geochemical significance. Geochim Cosmochim Acta 37:559–567

    Article  CAS  Google Scholar 

  • Allport DC, Bu'Lock JD (1960) Biosynthetic pathways in Daldinia concentrica. J Chem Soc 1960:654–665

    Article  Google Scholar 

  • Anderson JM, Murray J (1956) Isolation of 4.9-dihydroxyperylene-3,10-quinone from a fungus. Chem Ind 1956:376

    Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycles 16:111. doi:10.1029/200

    Google Scholar 

  • Bechtel A, Widera M, Sachsenhofer RF, Gratzer R, Lucke A, Woszczyk M (2007) Biomarker and stable carbon isotope systematics of fossil wood from the second Lusatian lignite seam of the Lubstow deposit (Poland). Org Geochem 38:1850–1864

    Article  CAS  Google Scholar 

  • Bendoratius. G (1973) Hydrocarbons of biogenic origin in petroleum–aromatic triterpenes and bicvclic sesquiterpenes. In: Tissot B, Bienner F (eds) Advances in Organic Geochemistry (eds), Editions Technip. pp 209–224

  • Boitsov S, Jensen HKB, Klungsøyr J (2009) Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea. Mar Environ Res 68:236–245

    Article  CAS  Google Scholar 

  • Bouloubassi I, Saliot A (1993) Dissolved, particulate, and sedimentary naturally derived polycyclic aromatic hydrocarbon in a coastal environment: geochemical significance. Mar Chem 42:127–143

    Article  CAS  Google Scholar 

  • Budzinski H, Garigues P, Bernard G, Bellocq J, Hinrichs K, Rullkötter J (1997) Identification of polycyclic aromatic hydrocarbons in sediments from the Amazon Fan: Occurrence and diagenetic evolution. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 55:555–564

  • Cameron DW, Todd AR (1967) Aphid pigments. In: Taylor WI, Battersby AR (eds) Oxidative coupling of phenols. Marcel Dekker, New York, pp 203–241

    Google Scholar 

  • Cameron D, Cromartie RE, Todd AR (1964) Coloring matters of the Aphididae. Part XVI. Reconsideration of the structure of the erythroaphins. J Chem Soc London 1964:48–50

    Google Scholar 

  • Canuel EA, Lerberg EJ, Dickhut RM, Kuehl SS, Bianchi TS, Wakeham SG (2009) Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: the Sacramento-San Joaquin River Delta (California, U.S.A.). Mar Pollut Bull 59:154–163

    Article  CAS  Google Scholar 

  • Carruthers WS, Watkins DAM (1964) Identification of 1,2,3,4 tetrahydro-2,2,9 trimethyl picene in an American crude oil. Chem Ind 1963:724–729

    Google Scholar 

  • Chaffe AL, Johns RB (1983) Polycyclic aromatic hydrocarbons in Australian coals. 1. Angularly fused pentacyclic tri- and tetra-aromatic components of Victorian brown coal. Geochim Cosmochim Acta 47:2141–2155

    Article  Google Scholar 

  • Conomos TJ, Smith RE, Gartner JW (1985) Environmental setting of San Francisco Bay. In: J.E. Cloern JE, Nichols FH (eds) Temporal dynamics of an estuary: San Francisco Bay, Hydrobiologica 129:1–12

  • Daub ME, Herro S, Chung K-R (2005) Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett 252:197–206

    Article  CAS  Google Scholar 

  • De Mayo P (1959) The higher triterpenoids. 239 pp. Interscience, 239 pp

  • De Riccardis F, Iorzzi M, Minale L, Riccio R, De Forges BR, Debitus C (1991) The gymnochromes: novel marine brominated phenanthroperylene-quinone pigments from stalked crinoid Gymnocrinus richeri. J Org Chem 56:6781–6787

    Article  Google Scholar 

  • Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, Macdonald EH (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640

    Article  CAS  Google Scholar 

  • Ekpo BO, Oyo-Ita OE, Oris DR, Simoneit BRT (2012) Distributions and sources of polycyclic aromatic hydrocarbons in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. Environ Monit Assess 184:1037–1047

    Article  CAS  Google Scholar 

  • Ewing SA, Sanderman J, Baisden TW, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover; evidence from California grassland soils. J Geophys Res 111:nGO3012. doi:10.1029/2006JG000174

    Article  Google Scholar 

  • Fan C-W, Shiue J, Wu C-Y, Wu C-Y (2011) Perylene dominance in sediments from a subtropical high mountain lake. Org Geochem 42:116–119

    Article  CAS  Google Scholar 

  • Farrington JW, Takada H (2014) Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27:196–213

    Article  Google Scholar 

  • Fernández P, Carrera G, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2003) Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. Environ Sci Technol 37:3261–3267

    Article  Google Scholar 

  • Gao SS, Li XM, Wang BG (2009) Perylene derivatives produced by Alternaria alternata, an endophytic fungus isolated from Laurencia species. Nat Prod Commun 4:1477–1480

    CAS  Google Scholar 

  • Gocht T, Barth JAC, Epp M, Jochmann M, Blessing M, Schmidt TC, Grathwohl P (2007) Indications for pedogenic formation of perylene in a terrestrial soil profile: depth distribution and first results from stable carbon isotope ratios. Appl Geochem 22:2652–2663

    Article  CAS  Google Scholar 

  • Gomes AO, Azevedo DA (2003) Aliphatic and aromatic hydrocarbons in tropical recent sediments of Campos dos Goytacazes, RJ, Brazil.  J Braz Chem Soc 14:358–368

  • Greiner A, Spyckerelle C, Albrecht P, Ourison G (1977) Aromatic hydrocarbons from geological sources. V. Mono and diaromatic hopane derivatives. J Chem Res (M) 3829–3871

  • Grice K, Lu H, Atahan P, Asif M, Hallmann C, Greenwood P, Maslen E, Tulipani S, Williford K, Dodson J (2009) New insights into the origin of perylene in geological samples. Geochim Cosmochim Acta 73:6531–6543

    Article  CAS  Google Scholar 

  • Grimalt JO, van Droogea BL, Ribesa A, Fernández P, Peter Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24

    Article  CAS  Google Scholar 

  • Gschwend PM, Hites RA (1981) Fluxes of polycyclic aromatic-hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim Cosmochim Acta 45:2359–2367

    Article  CAS  Google Scholar 

  • Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of a novel binaphthyl and three novel benzophenone derivatives with plant-growth inhibitory activity from the fungus Daldinia concentrica. Chem Pharm Bull 42:1528–1530

    Article  CAS  Google Scholar 

  • Herbold B, Moyle PB (1989) The ecology of the: Sacramento-San Joaquin Delta: a community profile. US Fish Wildl Serv Biol Rep 85(7.22)

  • Hites RA, Laflamme RE, Windsor JG Jr, Farrington JW, Deuser WG (1980) Polycyclic aromatic hydrocarbons in an anoxic sediment core from the Pettaquamscutt River (Rhode Island, USA). Geochim Cosmochim Acta 44:873–878

    Article  CAS  Google Scholar 

  • Hodgson GW, Hitchon B, Taguchi K, Baker BL, Peake E (1968) Geochemistry of porphyrins, chlorins and polycyclic aromatics in soils, sediments and sedimentary rocks. Geochim Cosmochim Acta 32:737–772

    Article  CAS  Google Scholar 

  • Ishiwatari R, Matsushita T (1986) Determination of perylenequinones in sediments and soils. Proc Jpn Acad 62:287–290

    Article  CAS  Google Scholar 

  • Ishiwatari R, Uemura H, Yamamoto S (2014) Hopanoid hydrocarbons and perylene in Lake Biwa (Japan) sediments: environmental control on their abundance and molecular composition. Org Geochem 76:194–203

    Article  CAS  Google Scholar 

  • Itoh N, Hanari N (2010) Possible precursor of perylene in sediments of Lake Biwa elucidated by stable carbon isotope composition. Geochem J 44:161–166

    Article  CAS  Google Scholar 

  • Itoh N, Tamamura S, Kumagai M (2010a) Distributions of polycyclic aromatic hydrocarbons in a sediment core from the north basin of Lake Biwa, Japan. Org Geochem 41:845–852

    Article  CAS  Google Scholar 

  • Itoh N, Tamamura S, Sato T, Kumagai M (2010b) Elucidation of polycyclic aromatic hydrocarbon sources in the sinking particles in Lake Biwa, Japan. Limnology 11:241–250

    Article  CAS  Google Scholar 

  • Itoh N, Sakagami N, Torimura M, Watanabe M (2012) Perylene in Lake Biwa sediments originating from Cenococcum geophilum in its catchment area. Geochim Cosmochim Acta 95:241–251

    Article  CAS  Google Scholar 

  • Jaffé R, Elisme T, Cabrera AC (1996) Organic geochemistry of seasonally flooded rain forest soils: molecular composition and early diagenesis of lipid components. Org Geochem 25:9–17

    Article  Google Scholar 

  • Jassby AD, Cloern JE (2000) Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA). Aquat Conserv 10:323–352

    Article  Google Scholar 

  • Jiang C, Alexander R, Kagi RI, Murray AP (2000) Origin of perylene in ancient sediments and its geological significance. Org Geochem 31:1545–1559

  • Kimble BJ, Maxwell JR, Philp RP, Eglinton G, Albrecht P, Ensminger A, Arpin P, Ourisson G (1974) Tri- and tetraterpenoid hydrocarbons in the Messel oil shale. Geochim Cosmochim Acta 38:1165–1181

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

    Article  CAS  Google Scholar 

  • Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  CAS  Google Scholar 

  • Krohn K, John M, Aust H-J, Draeger S, Schulz B (1999) Biologically active metabolites from fungi 131 Stemphytriol, a new perylene derivative from Monodictys fluctuata. Nat Prod Lett 14:31–34

    Article  CAS  Google Scholar 

  • Kumada K, Hurst HM (1967) Green humic acid and its possible origin as a fungal metabolite. Nature 214:631–633

    Article  CAS  Google Scholar 

  • Laflamme RE, Hites RA (1979) Tetra- and pentacyclic, naturally-occurring, aromatic hydrocarbons in Recent sediments. Geochim Cosmochim Acta 43:1687–1691

    Article  CAS  Google Scholar 

  • Le Milbeau C, Schaeffer P, Connan J, Albrecht P, Adam P (2010) Aromatized C-2 oxygenated triterpenoids as indicators for a new transformation pathway in the environment. Org Lett 12:1504–1507

    Article  Google Scholar 

  • Lima AL, Eglinton TI, Reddy CM (2003) High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environ Sci Technol 37:53–61

    Article  CAS  Google Scholar 

  • Lima AL, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensic 6:109–131

    Article  CAS  Google Scholar 

  • Lipiatou E, Saliot A (1992) Biogenic aromatic hydrocarbon geochemistry in the Rhone River Delta and in surface sediments from the open northwestern Mediterranean Sea. Estuar Coast Shelf Sci 34:515–531

    Article  CAS  Google Scholar 

  • Lohmann F, Trendel M-L, Hetru C, Albrecht P (1990) C-29 tritiated β-anyrn: chemical synthesis aiming at the study of aromatization processes in sediments. J Label Compd Radiopharm XXVIII:377–386

    Article  Google Scholar 

  • Louda JW, Baker EW (1984) Perylene occurrence, alkylation and possible sources in deep-ocean sediments. Geochim Cosmochim Acta 48:1043–1058

    Article  CAS  Google Scholar 

  • Lousberg RJJ, Salemink CA, Weiss U, Batterham TJ (1969) Pigments of Elsinoe species. Part II. Structure of elsinochromes A, B, and C. J Chem Soc 1969:1219–1225

    Google Scholar 

  • Lucas LV, Cloern JE, Thompson JK, Monsen NE (2002) Functional variability of habitats within the Sacramento–San Joaquin Delta: restoration implications. Ecol Appl 12:1528–1547

    Google Scholar 

  • Malawska M, Bojakowska I, Wilkomirski B (2002) Polycyclic aromatic hydrocarbons (PAHs) in peat and plants from selected peat-bogs in the north-east of Poland. J Plant Nutr Soil Sci 165:686–6917

    Article  CAS  Google Scholar 

  • Marynowski L, Smolarek J, Bechtel A, Philippe M, Kurkiewicz S, Simoneit BRT (2013) Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Org Geochem 59:143–151

    Article  CAS  Google Scholar 

  • McVeety B, Hites R (1988) Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmos Environ 22:511–536

    Article  CAS  Google Scholar 

  • Muri G, Wakeham SG, Rose NL (2006) Records of atmospheric delivery of pyrolysis-derived pollutants in Recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139:161–168

    Article  Google Scholar 

  • Orr WL, Grady JR (1967) Perylene in basin sediments off southern California. Geochim Cosmochim Acta 31:1201–1209

    Article  CAS  Google Scholar 

  • Ourisson G, Albrecht P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25:398–402

    Article  CAS  Google Scholar 

  • Plachá D, Raclavská H, Matýsek D, Rümmeli H (2009) The polycyclic aromatic hydrocarbon concentrations in soils in the region of Valasske Mezirici, the Czech Republic. Geochem Trans 10:12. doi:10.1186/1467-4866-10-12

    Article  Google Scholar 

  • Prahl FG, Carpenter R (1983) Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. Geochim Cosmochim Acta 47:1013–1023

    Article  CAS  Google Scholar 

  • Préndez M, Barra C, Toledo C, Richter P (2011) Alkanes and polycyclic aromatic hydrocarbons in marine surficial sediment near Antarctic stations at Fildes Peninsula, King George Island. Antarct Sci 23:578–588

    Article  Google Scholar 

  • Quiroz R, Grimalt JO, Fernandez P, Camarero L, Catalan J, Stuchlik E, Thies H, Nickus U (2011) Polycyclic aromatic hydrocarbons in soils from European high mountain Areas. Water Air Soil Pollut 215:655–666

    Article  CAS  Google Scholar 

  • Ramdahl T (1983) Retene— a molecular marker of wood combustion in ambient air. Nature 306:580–582

    Article  CAS  Google Scholar 

  • Reis-Kautt M, Albrecht P (1989) Hopane-derived triterpenoids in soils. Chem Geol 76:143–151

    Article  Google Scholar 

  • Rogge WF, Medeiros PM, Simoneit BRT (2007) Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos Environ 41:8183–8204

    Article  CAS  Google Scholar 

  • Sato O (1976) A green pigment similar to the Pg fraction of P type humic acids and related compounds produced by litter decomposing fungi. Soil Sci Plant Nutr 22:269–275

    Article  Google Scholar 

  • Schnell G, Schaeffer P, Motsch E, Adam P (2012) Triterpenoids functionalized at C-2 as diagenetic transformation products of 2,3-dioxygenated triterpenoids from higher plants in buried wood. Org Biomol Chem 10:8276–8282

  • Schnell G, Schaeffer P, Tardivon H, Estelle Motsch E, Connan J, Ertlen D, Schwartz D, Schneider N, Adam P (2014) Contrasting diagenetic pathways of higher plant triterpenoids in buried wood as a function of tree species. Org Geochem 66:107–124

  • Schoellhamer DH, Wright SA, Drexler JZ (2012) Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta, San Francisco Estuary. Watershed Sci 10, 27p

  • Silliman JE, Meyers PA, Eadie BJ (1998) Perylene: an indicator of alteration processes or precursor materials? Org Geochem 29:1737–1744

    Article  CAS  Google Scholar 

  • Silliman JE, Meyers PA, Ostrom PH, Ostrom NE, Eadie BJ (2000) Insights into the origin of perylene from isotopic analyses of sediments from Saanich Inlet, British Columbia. Org Geochem 31:1133–1142

    Article  CAS  Google Scholar 

  • Silliman JE, Meyers PA, Eadie BJ, Klump JV (2001) A hypothesis for the origin of perylene based on its low abundance in sediments of Green Bay, Wisconsin. Chem Geol 177:309–322

  • Simoneit BRT (1986) Cyclic terpenoids of the geosphere. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 43–99

    Google Scholar 

  • Simoneit BRT (2002) Biomass burning: a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17:129–162

    Article  CAS  Google Scholar 

  • Simoneit BRT, Xu Y, Neto RR, Cloutier JB, Jaffé R (2009) Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments. Chemosphere 74:543–550

    Article  CAS  Google Scholar 

  • Spyckerelle C, Greiner AS, Albrecht P, Ourisson G (1977a) Aromatic hydrocarbons from geological sources III. A tetrahydrochysene derived from triterpenes in Recent and old sediments: 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene. J Chem Res 1977:3746–3777, (S) 1977:330–331

    Google Scholar 

  • Spyckerelle C, Greiner AS, Albrecht P, Ourisson G (1977b) Aromatic hydrocarbons from geological sources IV. A octahydrochrysene derived from triterpenes in Recent and old sediments: 3,3,7,13-trimethyl-1,2,3,4,11,12,13,14-tetrahydrochrysene. J Chem Res 1977:3821–3828, (S) 1977:332–333

    Google Scholar 

  • Suzuki N, Yessalina S, Kikuchi T (2010) Possible fungal origin of perylene in Late Cretaceous to Paleogene terrestrial sedimentary rocks of northeastern Japan as indicated from stable carbon isotopes. Org Geochem 41:234–241

    Article  CAS  Google Scholar 

  • Tan YL, Heit M (1981) Biogenic and abiogenic polynuclear aromatic hydrocarbons in sediments from two remote Adirondack lakes. Geochim Cosmochim Acta 45:2267–2279

    Article  CAS  Google Scholar 

  • Vázquez LH, Palazon J, Navarro-Ocaña A (2012) The pentacyclic triterpenes: β-amyrins: A review of sources and biological activities, phytochemicals—a global perspective of their role in nutrition and health, Rao V (ed), ISBN: 978-953-51-0296-0, InTech, Available from: http://www.intechopen.com/books/phytochemicals-a-global-perspective-of-their-role-in-nutrition-andhealth/ the-pentacyclic-triterpenes-amyrins-a-review-of-sources-and-biological-activities

  • Venkatesan MI (1988) Occurrence and possible sources of perylene in marine sediments—a review. Mar Chem 25:1–27

    Article  CAS  Google Scholar 

  • Venkatesan MI, Kaplan IR (1987) Organic geochemistry of Antarctic marine sediments. Part I. Bransfield Strait. Mar Chem 21:347–375

    Article  CAS  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W, Boon JJ, de Leeuw JW (1979) Perylene in sediments from the Namibian Shelf. Geochim Cosmochim Acta 43:1141–1144

    Article  CAS  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980a) Polycyclic aromatic-hydrocarbons in Recent lake-sediments 2. Compounds derived from biogenic precursors during early diagenesis. Geochim Cosmochim Acta 44:415–429

    Article  CAS  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980b) Polycyclic aromatic hydrocarbons in Recent lake sediments. I. Compounds having anthropogenic origins. Geochim Cosmochim Acta 44:403–413

    Article  CAS  Google Scholar 

  • Wakeham SG, Forrest J, Masiello CA, Gélinas Y, Alexander CR, Leavitt PR (2004) Hydrocarbons in Lake Washington sediments. A 25-year retrospective in an urban lake. Environ Sci Technol 38:431–439

    Article  CAS  Google Scholar 

  • Waterson EJ, Canuel EA (2008) Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid bomarker and δ13CTOC analyses. Org Geochem 39:422–439

  • Weiss U, Merlini L, Nasini G (1987) Naturally occurring perylenequinones. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Springer, pp. 1–71

  • Wilcke W, Amelung W, Martius C, Garcia MVB, Zech W (2000) Biological sources of polycyclic aromatic hydrocarbons (PAH) in the Amazonian rainforest. J Plant Nutr Soil Sci 163:27–30

    Article  CAS  Google Scholar 

  • Wilcke W, Krauss M, Amelung W (2002) Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments? Environ Sci Technol 36:3530–3535

    Article  CAS  Google Scholar 

  • Wolff G, Trendel JM, Albrecht P (1989) Novel monoaromatic triterpenoid hydrocarbons occurring in sediments. Tetrahedron 45:6721–6728

    Article  CAS  Google Scholar 

  • Wolkenstein K, Gross JH, Falk H, Schöler HF (2006) Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids. Proc R Soc B 273:451–456

    Article  CAS  Google Scholar 

  • Wu H, Lao X, Wang Q, Lu R (1989) The Shiraiachromes: novel fungal perylenequinone Pigments from Shiraia bambusicola. J Nat Prod 52:948–951

    Article  CAS  Google Scholar 

  • Youngblood W, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Acta 39:1303–1314

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW (1995) Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie river and on the Beaufort Sea shelf. Arctic 48:118–129

    Article  Google Scholar 

  • Yunker M, Macdonald R (2003) Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser river basin and strait of Georgia, Canada. Org Geochem 34:1429–1454

  • Yunker MB, Macdonald RW, Veltkamp DJ, Cretney WJ (1995) Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary—integration of multivariate and biomarker approaches. Mar Chem 49:1–50

    Article  CAS  Google Scholar 

  • Yunker M, Macdonald R, Goyette D, Paton D, Fowler B, Sullivan D, Boyd J (1999) Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia. Sci Total Environ 225:181–209

    Article  CAS  Google Scholar 

  • Yunker M, Macdonald R, Vingarzan R, Mitchell R, Goyette D, Sylvestre S (2002) PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Yunker MB, McLaughlin RA, Fowler MG, Fowler BR (2014) Source apportionment of the hydrocarbon background in sediment cores from Hecate Strait, a pristine sea on the west coast of British Columbia, Canada. Org Geochem 76:235–258

  • Zakaria MA, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, Kumata H (2002) Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918

    Article  CAS  Google Scholar 

  • Zhang S-Y, Li Z-L, Bai J, Wang Y, Zhang L-M, Wu X, Hua H-M (2012) A new perylenequinone from a halotolerant fungus, Alternaria sp. M6. Chinese J Nat Med 10:68–71

    CAS  Google Scholar 

  • Zhang X, Xu Y, Ruan J, Ding S, Hung X (2014) Origin, distribution and environmental significance of perylene in Okinawa Trough since last glaciation maximum. Org Geochem 76:288–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Janet Thompson, Francis Parchaso and Byron Richards from the US Geological Survey (Menlo Park, CA) for assistance with site selection and sample collection. We also thank Beth Lerberg (VIMS) for lab and field assistance and Steve Kuehl and Linda Meneghini for field assistance. This study was supported by the National Science Foundation, Division of Environmental Biology, Ecosystems Program (DEB-0454736 and DEB-0454741) and Ocean Sciences Division (OCE-0962277). This paper is contribution 3499 of the Virginia Institute of Marine Science, College of William and Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Wakeham.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakeham, S.G., Canuel, E.A. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. Environ Sci Pollut Res 23, 10426–10442 (2016). https://doi.org/10.1007/s11356-015-5402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5402-x

Keywords

Navigation