Skip to main content
Log in

Metabolic profile of Mycobacterium smegmatis reveals Mce4 proteins are relevant for cell wall lipid homeostasis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The Mce proteins are encoded in a variable number of operons (from one to eight) in all Mycobacterium species. A role in the transport of host and mycobacterial lipids has been demonstrated for some Mce proteins in the pathogen Mycobacterium tuberculosis but little is known about these proteins in Mycobacterium smegmatis, a soil dweller species.

Objective

To investigate the role of Mce proteins in M. smegmatis.

Method

We used a non-targeted GC–MS approach to define the metabolic profiles of knockout mutants in mce operons of M. smegmatis. Metabolomic analysis was complemented with thin layer chromatography and transcriptional studies.

Result

We demonstrated that the lack of Mce4 proteins alters the primary carbon metabolism of M. smegmatis by reducing the content of fatty acids and increasing the accumulation of two stress-related compounds, glutamate/glutamine and triacyl glycerol (TAG). We also provide evidence supporting that the accumulation of TAG in a Δmce4 mutant depends on the bacterial redox state.

Conclusion

These results, together with the finding that the cell surface of the Δmce4 mutant is significantly altered, support a role for Mce4 in maintaining the cell wall lipids architecture of M. smegmatis, which, when altered, induces a redox imbalance that results in the accumulation of the stress-related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T., & Riley, L. W. (1993). Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Science, 261(5127), 1454–1457.

    Article  CAS  PubMed  Google Scholar 

  • Behrends, V., Williams, K. J., Jenkins, V. A., Robertson, B. D., & Bundy, J. G. (2012). Free glucosylglycerate is a novel marker of nitrogen stress in Mycobacterium smegmatis [Research Support, Non-U.S. Gov’t]. Journal of Proteome Research, 11(7), 3888–3896. doi:10.1021/pr300371b.

    Article  CAS  PubMed  Google Scholar 

  • Beste, D. J., Espasa, M., Bonde, B., Kierzek, A. M., Stewart, G. R., & McFadden, J. (2009). The genetic requirements for fast and slow growth in mycobacteria [Research Support, Non-U.S. Gov’t]. PLoS One, 4(4), e5349. doi:10.1371/journal.pone.0005349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco, F. C., Soria, M., Bianco, M. V., & Bigi, F. (2012). Transcriptional response of peripheral blood mononuclear cells from cattle infected with Mycobacterium bovis [Research Support, Non-U.S. Gov’t]. PLoS One, 7(7), e41066. doi:10.1371/journal.pone.0041066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantrell, S. A., Leavell, M. D., Marjanovic, O., Iavarone, A. T., Leary, J. A., & Riley, L. W. (2013). Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis [Research Support, N.I.H., Extramural]. Journal of Microbiology, 51(5), 619–626. doi:10.1007/s12275-013-3092-y.

    Article  CAS  Google Scholar 

  • Casali, N., & Riley, L. W. (2007). A phylogenomic analysis of the Actinomycetales mce operons [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. BMC Genomics, 8, 60. doi:10.1186/1471-2164-8-60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowley, S., Ko, M., Pick, N., Chow, R., Downing, K. J., Gordhan, B. G., et al. (2004). The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo [Research Support, Non-U.S. Gov’t]. Molecular Microbiology, 52(6), 1691–1702. doi:10.1111/j.1365-2958.2004.04085.x.

    Article  CAS  PubMed  Google Scholar 

  • Daniel, J., Deb, C., Dubey, V. S., Sirakova, T. D., Abomoelak, B., Morbidoni, H. R., et al. (2004). Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture [Research Support, U.S. Gov’t, P.H.S.]. Journal of Bacteriology, 186(15), 5017–5030. doi:10.1128/JB.186.15.5017-5030.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dassa, E., & Schneider, E. (2001). The rise of a protein family: ATP-binding cassette systems [Editorial Review]. Research in Microbiology, 152(3–4), 203.

    Article  CAS  PubMed  Google Scholar 

  • de la Paz Santangelo, M., Klepp, L., Nunez-Garcia, J., Blanco, F. C., Soria, M., Garcia-Pelayo, M. C., et al. (2009). Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology, 155(Pt 7), 2245–2255. doi:10.1099/mic.0.027086-0.

    Article  PubMed  Google Scholar 

  • Dunphy, K. Y., Senaratne, R. H., Masuzawa, M., Kendall, L. V., & Riley, L. W. (2010). Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5 [Research Support, N.I.H., Extramural]. Journal of Infectious Diseases, 201(8), 1232–1239. doi:10.1086/651452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrellad, M. A., McNeil, M., Santangelo Mde, L., Blanco, F. C., Garcia, E., Klepp, L. I., et al. (2014). Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Tuberculosis, 94(2), 170–177. doi:10.1016/j.tube.2013.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant, J. L., Viljoen, A. J., van Helden, P. D., & Wiid, I. J. (2016). Glutamate dehydrogenase is required by Mycobacterium bovis BCG for resistance to cellular stress. PLoS One, 11(1), e0147706. doi:10.1371/journal.pone.0147706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garton, N. J., Waddell, S. J., Sherratt, A. L., Lee, S. M., Smith, R. J., Senner, C., et al. (2008). Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum [Research Support, Non-U.S. Gov’t]. PLoS Med, 5(4), e75. doi:10.1371/journal.pmed.0050075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gioffre, A., Infante, E., Aguilar, D., Santangelo, M. P., Klepp, L., Amadio, A., et al. (2005). Mutation in mce operons attenuates Mycobacterium tuberculosis virulence [Research Support, Non-U.S. Gov’t]. Microbes and Infection, 7(3), 325–334. doi:10.1016/j.micinf.2004.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Gouzy, A., Poquet, Y., & Neyrolles, O. (2014). Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence [Research Support, Non-U.S. Gov’t Review]. Nature Reviews Microbiology, 12(11), 729–737. doi:10.1038/nrmicro3349.

    Article  PubMed  Google Scholar 

  • Haile, Y., Caugant, D. A., Bjune, G., & Wiker, H. G. (2002). Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT) [Research Support, Non-U.S. Gov’t]. FEMS Immunology and Medical Microbiology, 33(2), 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Harth, G., Maslesa-Galic, S., Tullius, M. V., & Horwitz, M. A. (2005). All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis [Research Support, N.I.H., Extramural]. Molecular Microbiology, 58(4), 1157–1172. doi:10.1111/j.1365-2958.2005.04899.x.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, S. M., Pandey, A. K., Capite, N., Fortune, S. M., Rubin, E. J., & Sassetti, C. M. (2006). Characterization of mycobacterial virulence genes through genetic interaction mapping [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences USA, 103(31), 11760–11765. doi:10.1073/pnas.0603179103.

    Article  CAS  Google Scholar 

  • Kim, M. J., Wainwright, H. C., Locketz, M., Bekker, L. G., Walther, G. B., Dittrich, C., et al. (2010). Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism [Research Support, N.I.H., Extramural]. EMBO Molecular Medicine, 2(7), 258–274. doi:10.1002/emmm.201000079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepp, L. I., Forrellad, M. A., Osella, A. V., Blanco, F. C., Stella, E. J., Bianco, M. V., et al. (2012). Impact of the deletion of the six mce operons in Mycobacterium smegmatis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Microbes and Infection, 14(7–8), 590–599. doi:10.1016/j.micinf.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1(1), 387–396. doi:10.1038/nprot.2006.59.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A. K., & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences USA, 105(11), 4376–4380. doi:10.1073/pnas.0711159105.

    Article  CAS  Google Scholar 

  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR [Comparative Study]. Nucleic Acids Research, 30(9), e36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakers, C., Ruijter, J. M., Deprez, R. H., & Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data [Research Support, Non-U.S. Gov’t]. Neuroscience Letters, 339(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Santangelo, M. P., Goldstein, J., Alito, A., Gioffre, A., Caimi, K., Zabal, O., et al. (2002). Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis [Research Support, Non-U.S. Gov’t]. Microbiology, 148(Pt 10), 2997–3006.

    Article  CAS  PubMed  Google Scholar 

  • Sassetti, C. M., & Rubin, E. J. (2003). Genetic requirements for mycobacterial survival during infection [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences USA, 100(22), 12989–12994. doi:10.1073/pnas.2134250100.

    Article  CAS  Google Scholar 

  • Shi, L., Sohaskey, C. D., Pfeiffer, C., Datta, P., Parks, M., McFadden, J., et al. (2010). Carbon flux rerouting during Mycobacterium tuberculosis growth arrest [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Molecular Microbiology, 78(5), 1199–1215. doi:10.1111/j.1365-2958.2010.07399.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A., Crossman, D. K., Mai, D., Guidry, L., Voskuil, M. I., Renfrow, M. B., et al. (2009). Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response [Research Support, N.I.H., Extramural]. PLoS Pathogens, 5(8), e1000545. doi:10.1371/journal.ppat.1000545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirakova, T. D., Dubey, V. S., Deb, C., Daniel, J., Korotkova, T. A., Abomoelak, B., et al. (2006). Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress [Research Support, N.I.H., Extramural]. Microbiology, 152(Pt 9), 2717–2725. doi:10.1099/mic.0.28993-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, H., Sandie, R., Wang, Y., Andrade-Navarro, M. A., & Niederweis, M. (2008). Identification of outer membrane proteins of Mycobacterium tuberculosis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Tuberculosis, 88(6), 526–544. doi:10.1016/j.tube.2008.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadthagen, G., Kordulakova, J., Griffin, R., Constant, P., Bottova, I., Barilone, N., et al. (2005). p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis [Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 280(49), 40699–40706. doi:10.1074/jbc.M508332200.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, D., Chandra, H., & Bhatnagar, R. (2013). Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability [Research Support, Non-U.S. Gov’t]. BMC Microbiology, 13, 226. doi:10.1186/1471-2180-13-226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tullius, M. V., Harth, G., & Horwitz, M. A. (2003). Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs [Research Support, U.S. Gov’t, P.H.S.]. Infection and Immunity, 71(7), 3927–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by INTA Grant PNBIO1131034 and National Institutes of Health (NIH) Grants 1 R01 AI083084 and PAR08-130. MPS, FB, LK, MF and FB are CONICET fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Bigi.

Ethics declarations

Conflict of interest

María Paz, Santangelo; Adam, Heuberger; Federico, Blanco; Marina, Forrellad; Catalina, Taibo; Laura, Klepp; Julia, Sabio García; Pablo I., Nikel; Mary, Jackson and Fabiana, Bigi declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not requested because this article does not contain studies with human participants performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santangelo, M.P., Heuberger, A., Blanco, F. et al. Metabolic profile of Mycobacterium smegmatis reveals Mce4 proteins are relevant for cell wall lipid homeostasis. Metabolomics 12, 97 (2016). https://doi.org/10.1007/s11306-016-1035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1035-4

Keywords

Navigation