Skip to main content
Log in

The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The self-incompatibility type is of key importance to understanding pollination in orchards, because most olive cultivars are partially self-incompatible and thus require pollinizers to ensure fruit set. The gametophytic model has been advocated to function in the olive, but no allele pair has been attributed to any variety. The GSI model failed in most combinations to explain fruit set. Olive growers must screen experimentally and empirically to look for inter-compatible pair-wise combinations of varieties for optimum pollination. The sporophytic model, with given dominance relationships for six S-alleles matches 98 % of the experimental data of the two sets investigated. We propose a method to analyze data from controlled crosses between olive cultivars applied to two experiments for varieties crossed in a diallel design. Furthermore, the dominance between the S-allele pair allows rational prediction of olive variety self-incompatibility levels. The S-allele pairs were unraveled for more than 60 cultivars. To go further, crosses between reference varieties—those in which the S-allele pair was unraveled—and varieties under experimentation (VarE) with an unknown S-allele pair will enable an increase in knowledge and the choice of the best pollinizers in silico. Nevertheless, we pose outstanding questions in orchards where open-pollination efficiency with varieties harboring the R2R3, R1R3, R1R5, or R3R5 pairs. These S-allele pairs require pollen grains without R2 or R3 , R1 or R3, and R3 or R5 determinants. Such pollinizer varieties are not abundant in France and Italy, and this questions whether their spread is sufficient for optimal pollination of main varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Kasasbeh MF, Atteyeh AF, Qrunfleh MM (2005) A study of cross pollination of three olive cultivars in Jordan. Dirasat, Agric Sci 32:222–227

    Google Scholar 

  • Arnaud J-F, Fénart S, Cordellier M, Cuguen J (2010) Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure. Evol Appl 3(3):305–318

    Article  PubMed Central  Google Scholar 

  • Bartolini G (2007) Olive germplasm (Olea europaea L.): cultivars, synonyms, cultivation area, descriptors. www.oleadb.it/

  • Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hort Sci 22(2):73–86

    Google Scholar 

  • Besnard G, Khadari B, Villemur P, Bervillé A (2000) A cytoplasmic male sterility in olive cultivars Olea europaea L.: phenotypic, genetic and molecular approaches. Theor Appl Genet 100:1018–1024

    Article  Google Scholar 

  • Bradley MV, Griggs WHL (1963) Morphological evidence of incompatibility in Olea europaea. Phytomorphology 13:141–156

    Google Scholar 

  • Breton CM, Bervillé A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. CR Biologies 335:563–572

    Article  CAS  Google Scholar 

  • Breton C, Tersac M, Bervillé A (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928

    Article  Google Scholar 

  • Charlot C (2012) L’olivier dans l’histoire : chamanisme, religion, médecine et pharmacie. L’Olivier l’arbre des temps, Eds C Breton & A Bervillé, Quae, Versailles

  • Collani S, Galla G, Baldoni L, Barcaccia G (2009) Self-incompatibility in olive (Olea europaea L.) Proceedings of the 53rd Italian society of agricultural genetics, annual congress Torino, Italy—16/19 September

  • De Graaf BHJ, Lee C, McClure B, Franklin-Tong NVE (2006) Cellular mechanisms for pollen tube growth inhibition in gametophytic self-incompatibility. Springer

  • De la Rosa R, James CM, Tobutt KR (2004) Using microsatellites for paternity testing in olive progenies. Hortscience 39:351–354

    Google Scholar 

  • De la Rosa R, Belaj A, Muňoz-Merida A, Trelles O, Valpuesta V, Beuzon CR (2013) Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. Journal of the American Society for Horticultural Science 138:4290–296

    Google Scholar 

  • De Nettancourt D (1981) Incompatibility and incongruity in wild and cultivated plants. Springer

  • Diaz A, Martin A, Rallo P, Barranco D, De la Rosa R (2006) Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive Assessed by SSR Markers. JASHS 131:250–255

    CAS  Google Scholar 

  • Diaz A, Martin A, Rallo P, De la Rosa R (2007) Cross-compatibility of the parents as the main factor for successful olive breeding crosses. J Am Soc Hortic Sci 132:830–835

    Google Scholar 

  • El-Aabidine AZ, Charafi J, Grout C, Doligez A, Santoni S, Moukhli A, Jay-Allemand C, El Modafar C, Khadari B (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302

    Article  CAS  Google Scholar 

  • El-Hady S, Eman LF, Haggag MM, Abdel-Migeed M, Desouky IM (2007) Studies on sex compatiblity of some olive cultivars. Res J Agric Biol Sci 3:504–509

    Google Scholar 

  • Farinelli D, Boco M, Tombesi A (2006) Results of four years of observations on self-sterility behaviour of several olive cultivars and significance of cross-pollination. Proc Olive BioTec I:275–282

    Google Scholar 

  • Farinelli D, Hassani D, Tombesi A (2008) Pollenizer and Cultivar influence seed number and fruit characteristics in Olea europaea L. Acta Hort 791:127–136

    Google Scholar 

  • Franklin-Tong VE (2008) Self-Incompatibility in Papaver rhoeas: progress in understanding mechanisms involved in regulating self-incompatibility in Papaver, In Self-incompatibility in flowering plants: evolution, diversity and mechanisms. Springer, Berlin, pp 237–258

    Book  Google Scholar 

  • Franklin-Tong N, Franklin FCH (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. TRENDS in Plant Sci 8:598–605

    Article  CAS  Google Scholar 

  • Gerstel DU (1950) Self-incompatibility studies in Guayule II. Inheritance Gen 35:482–506

    CAS  Google Scholar 

  • Goubet P et al (2012) Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genetics: Res Article. doi:10.1371/journal.pgen.1002495

    Google Scholar 

  • Haring V, Gray JE, McClure A et al (1990) Self-incompatibility: a self-recognition system in plants. Science 250:937–941

    Article  CAS  PubMed  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  CAS  PubMed  Google Scholar 

  • Iannotta N, Briccoli Bati C, Perri L, Tocci C (1999) Interfertility tests using different pollinizers for the Caroela cultivar (Olea europaea L). Acta Hort 474:237–239

    Google Scholar 

  • Koelling VA, Karoly K (2007) Self-pollen interference is absent in wild radish (Raphanus Raphanistrum, Brassicaceae), a species with sporophytic self-incompatibility. Am J Bot 94(5):896–900

    Article  PubMed  Google Scholar 

  • Koubouris G-C (2009) Genetic and environmental factors affecting fruit set in olive (Olea europaea L.) and study of incompatibility in molecular level. PhD thesis Chania (Greece)

  • Lloyd DG (1965) Evolution of self-incompatibility and ratial differentiation in Leavenworthia (Cruciferae). Contributions from the Gray Herbarium of HarVarE 195:3–134

    Google Scholar 

  • Lumaret R, Ouazzani N (2001) Ancient wild olives in Mediterranean forests. Nature 413:700

    Article  CAS  PubMed  Google Scholar 

  • Mehlenbacher SA (2013) Incompatibility alleles of hazelnut cultivars. Acta Hort (in press)

  • Mehlenbacher SA, Thompson MM (1988) Dominance relationships among S-alleles inCorylus avellana L. Theor Appl Genet 76:669–672

    Article  CAS  PubMed  Google Scholar 

  • Mookerjee S, Guerin J, Collins G, Ford CM (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Moutier N, Terrien E, Pécout R, Hostalnou E, Margier JF (2006) Un groupe d’étude des compatibilités polliniques entre variétés d’olivier. Le Nouvel Olivier 51:8–11

    Google Scholar 

  • Musho U-B (1977) Contribution à l'étude de la biologie florale de l'olivier Olea europaea L.: mise en évidence de cas de stérilité mâle et recherche de pollinisateurs. PhD, Université de Montpellier, France

  • Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signalling in the sporophytic self-incompatibility response. Plant Cell 5(1325–1):335

    Google Scholar 

  • Orlandi F, Ferranti F, Romano B, Fornaciari M (2010) olive pollination: flowers and pollen of two var. of Olea europaea. New Zealand J Crop Hort Sci 31:159–168

    Article  Google Scholar 

  • Ouksili A (1983) Contribution à l'étude de la biologie florale de l'olivier europaea L. de la formation des fleurs à la pollinisation effective. PhD thesis, Univ-Montpellier 2, 143p

  • Padilla FA, Valenzuela LR (2012) Time trend in the viability of pollen grains in the ‘Picualolive (Olea europaea L.) cultivar. Grana 51(3):228–239

    Article  Google Scholar 

  • Pinillos V, Cuevas J (2009) Open-pollination provides sufficient levels of cross-pollen in Spanish monovarietal olive orchards. HortSci 44(2):499–502

    Google Scholar 

  • Seifi E (2009) Self-incompatibility in olive. PhD Adelaide University, Australia

    Google Scholar 

  • Seifi E, Guerin J, Kaiser B, Sedgley M (2011) Sexual compatibility and floral biology of some olive varieties. N Z J Crop Hortic Sci 39:141–151

    Article  Google Scholar 

  • Serrano I, Olmedilla A (2012) Histochemical location of key enzyme activities involved in receptivity and self- incompatibility in the olive tree (Olea europaea L.). Plant Sci 197:40–49

    Article  CAS  PubMed  Google Scholar 

  • Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papilla stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29:561–572

    Article  PubMed  Google Scholar 

  • Sims TL, Robbins TP (2009) Gametophytic self-incompatibility in Petunia, Chap 5 in T. Gerats, J. Strommer (eds.), DOI 10.1007/978-0-387-84796-25, Springer Science + Business Media, LLC

  • Spinardi A, Bassi D (2012) Olive Fertility as Affected by Cross-Pollination and Boron The Scientific World Journal Volume, Article ID 375631, doi:10.1100/2012/375631

  • Stein J, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica olearacea. Proc Natl Acad Sci U S A 88:8816–8820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Ann Rev Plant Biol 56:467–489

    Article  CAS  Google Scholar 

  • Takayama S et al (1990) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci U S A 97:1920–1927

    Article  Google Scholar 

  • Taslimpour M, Bonyampour A, Rahemi R (2008) Determining the best pollinizer of olive (Olea europaea L.) (Dezfoul’) in Fars Province. Amer.-Euras. J Agric Environ Sci 4(6):682–686

    Google Scholar 

  • Villemur P, Musho U-S, Delmas JM, Maamar M, Ouksili A (1984) Contribution à l’étude de la biologie florale de l’olivier(Olea europaea L.):stérilité mâle, flux pollinique et période effective de pollinisation. Fruits 39:467–473

    Google Scholar 

  • Vossen P (2007) http://cesonoma.ucdavis.edu/files/27184.pdf

  • Wang C-L, Zhang S-L (2011) A cascade signal pathway occurs in self-incompatibility of Pyrus pyrifolia. Plant Signal Behav 6(3):420–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S-B, Collins G, Sedgley M (2002) Sexual compatibility within and between olive varieties. J Hort Sci & Biotech 77:665–673

    Google Scholar 

  • Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Pierre Villemur for the deep and helpful discussion. This work benefits from the support from ANR SYSTERRA project PATERMED coordinated by Stéphane Anglès UMR LADYSS.

Data Archiving Statement

Data from Table 1 have been published in Moutier et al. (2006). Tables 2 and 3 have been published by Musho (1977), Ouksili (1983), and Villemur et al. (1984).

Data from Table 4 are original here. Data given in Table 4 will be detailed in another article devoted to Heredity Farinelli et al. (in preparation).

All the olive accession names refer to Bartolini et al. (2007) and variety description could be found at www.oleadb.it/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Marie Breton.

Additional information

Communicated by E. Dirlewanger

Catherine Marie Breton and Daniela Farinelli contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 92.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breton, C.M., Farinelli, D., Shafiq, S. et al. The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genetics & Genomes 10, 1055–1067 (2014). https://doi.org/10.1007/s11295-014-0742-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0742-0

Keywords

Navigation