Skip to main content

Advertisement

Log in

Production and Application of Gordonia westfalica GY40 Biosurfactant for Remediation of Fuel Oil Spill

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aims to produce and apply a biosurfactant from Gordonia westfalica GY40 for enhancing fuel oil solubilization and degradation in seawater. The immobilization of G. westfalica GY40 cells on chitosan flakes increased biosurfactant yield, and we achieved a biosurfactant concentration as high as 1.85 g L−1 when using 2 % soybean oil as the carbon source. The critical micelle dilution (CMD) value of cell-free broth was 25 % and the lowest surface tension was 35 mN m−1. The cell-free broth was able to solubilize and disperse fuel oil, at efficiencies corresponding to biosurfactant concentrations and CMD values. The surface activity of cell-free broth was stable under wide ranges of salinity, temperature, and pH. For the oil degradation test, cell-free broth at 0.5× CMD was added along with polyurethane foam-immobilized Gordonia sp. JC11, an efficient oil-degrading bacterial inoculum, to fuel oil spiked seawater. The system removed 81 % of 1 g L−1 fuel oil in nutrient seawater medium within 6 days. When tested with three seawater samples collected along the Thai coastal area, the addition of both biosurfactant and immobilized Gordonia sp. JC11 was able to remove 60–70 % of 1 g L−1 fuel oil, while the natural attenuation (control) removed only 26–35 % of fuel oil. The application of cell-free broth reduced the extraction and purification steps. In addition, the simple production of G. westfalica GY40 biosurfactant and Gordonia sp. JC11 inoculum suggested that they are suitable for cleaning-up oil spills in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bharali, P., Das, S., Konwar, B. K., & Thakur, A. J. (2011). Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. International Biodeterioration & Biodegradation, 65, 682–690.

    Article  CAS  Google Scholar 

  • Chanthamalee, J., & Luepromchai, E. (2012). Isolation and application of Gordonia sp. JC11 for removal of boat lubricants. Journal of General and Applied Microbiology, 58, 19–31.

    Article  CAS  Google Scholar 

  • Chanthamalee, J., Wongchitphimon, T., & Luepromchai, E. (2013). Treatment of oily bilge water from small fishing vessels by PUF-immobilized Gordonia sp. JC11. Water, Air, and Soil Pollution, 224, 1601.

    Article  Google Scholar 

  • Chao, M., Shen, X., Lun, F., Shen, A., & Yuan, Q. (2012). Toxicity of fuel oil water accommodated fractions on two marine microalgae, Skeletonema costatum and Chlorela spp. Bulletin of Environmental Contamination and Toxicology, 88, 712–716.

    Article  CAS  Google Scholar 

  • Déziel, E., Lépine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1440, 244–253.

    Article  Google Scholar 

  • Dogan, I., Pagilla, K. R., Webster, D. A., & Stark, B. C. (2006). Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. Journal of Industrial Microbiology and Biotechnololgy, 33, 693–700.

    Article  CAS  Google Scholar 

  • Ferraz, C., Araújo, Á. A., & Pastore, G. M. (2002). The influence of vegetable oils on biosurfactant production by Serratia marcescens. Applied Biochemistry and Biotechnology, 98, 841–847.

    Article  Google Scholar 

  • Franzetti, A., Bestetti, G., Caredda, P., La Colla, P., & Tamburini, E. (2008). Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiology Ecology, 63, 238–248.

    Article  CAS  Google Scholar 

  • Franzetti, A., Caredda, P., La Colla, P., Pintus, M., Tamburini, E., Papacchini, M., & Bestetti, G. (2009a). Cultural factors affecting biosurfactant production by Gordonia sp. BS29. International Biodeterioration & Biodegradation, 63, 943–947.

    Article  CAS  Google Scholar 

  • Franzetti, A., Caredda, P., Ruggeri, C., La Colla, P., Tamburini, E., Papacchini, M., & Bestetti, G. (2009b). Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere, 75, 801–807.

    Article  CAS  Google Scholar 

  • Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J. P., & Banat, I. M. (2010). Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology, 112, 617–627.

    Article  CAS  Google Scholar 

  • Gallego, J., González-Rojas, E., Peláez, A., Sánchez, J., García-Martínez, M., Ortiz, J., Torres, T., & Llamas, J. (2006). Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Organic Geochemistry, 37, 1869–1884.

    Article  CAS  Google Scholar 

  • Hua, Z., Chen, Y., Du, G., & Chen, J. (2004). Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World Journal of Microbiology and Biotechnology, 20, 25–29.

    Article  CAS  Google Scholar 

  • Inès, M., & Dhouha, G. (2015). Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydrate Research, 416, 59–69.

    Article  Google Scholar 

  • Israelachvili, J. (1994). The science and applications of emulsions—an overview. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91, 1–8.

    Article  CAS  Google Scholar 

  • Jackisch-Matsuura, A. B., Santos, L. S., Eberlin, M. N., Faria, A. F. D., Matsuura, T. M., Grossman, J., & Durrant, L. R. (2014). Production and characterization of surface-active compounds from Gordonia amicalis. Brazilian Archives of Biology and Technology, 57, 138–144.

    Article  CAS  Google Scholar 

  • Khondee, N., Tathong, S., Pinyakong, O., Müller, R., Soonglerdsongpha, S., Ruangchainikom, C., Tongcumpou, C., & Luepromchai, E. (2015). Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochemical Engineering Journal, 93, 47–54.

    Article  CAS  Google Scholar 

  • Kim, H.-S., Jeon, J.-W., Lee, H.-W., Park, Y.-I., Seo, W.-T., Oh, H.-M., Katsuragi, T., Tani, Y., & Yoon, B.-D. (2002). Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnology Letters, 24, 225–229.

    Article  CAS  Google Scholar 

  • Kügler, J. H., Le Roes-Hill, M., Syldatk, C., & Hausmann, R. (2015). Surfactants tailored by the class Actinobacteria. Frontiers in Microbiology, 6, 212.

    Google Scholar 

  • Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2015). Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chemical Engineering Journal, 263, 479–487.

    Article  CAS  Google Scholar 

  • Mercer, K., & Trevors, J. T. (2011). Remediation of oil spills in temperate and tropical coastal marine environments. The Environmentalist, 31, 338–347.

    Article  Google Scholar 

  • Mnif, I., & Ghribi, D. (2015). Microbial derived surface active compounds: properties and screening concept. World Journal of Microbiology and Biotechnology, 31, 1001–1020.

    Article  CAS  Google Scholar 

  • Morya, V. K., Park, J. H., Kim, T. J., Jeon, S., & Kim, E. K. (2013). Production and characterization of low molecular weight sophorolipid under fed-batch culture. Bioresource Technology, 143, 282–288.

    Article  CAS  Google Scholar 

  • Nievas, M. L., Commendatore, M. G., Esteves, J. L., & Bucalá, V. (2008). Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. Journal of Hazardous Materials, 154, 96–104.

    Article  CAS  Google Scholar 

  • Noparat, P., Maneerat, S., & Saimmai, A. (2014). Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil. Applied Biochemistry and Biotechnology, 172, 3949–3963.

    Article  CAS  Google Scholar 

  • Pepi, M., Focardi, S., Lobianco, A., Angelini, D. L., Borghini, F., & Focardi, S. E. (2013). Degradation of fatty acids and production of biosurfactant as an added value, by a bacterial strain Pseudomonas aeruginosa DG2a isolated from aquaculture wastewaters. Water, Air, & Soil Pollution, 224, 1772.

    Article  Google Scholar 

  • Pizzul, L., Castillo, M. d., & Stenström, J. (2006). Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World Journal of Microbiology and Biotechnology, 22, 745–752.

    Article  CAS  Google Scholar 

  • Prieto, L., Michelon, M., Burkert, J., Kalil, S., & Burkert, C. (2008). The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere, 71, 1781–1785.

    Article  CAS  Google Scholar 

  • Saeki, H., Sasaki, M., Komatsu, K., Miura, A., & Matsuda, H. (2009). Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresource Technology, 100, 572–577.

    Article  CAS  Google Scholar 

  • Silva, R. D. C. F., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Sciences, 15, 12523–12542.

    Article  Google Scholar 

  • Svensson, M. (2010). Surfactants based on natural fatty acids. In Kjellin, M. & Johansson, I. (Ed.), Surfactants from renewable resources (pp. 3–19). Chichester: Wiley

  • Tesoro Corporation. (2013). Fuel oil [Material Safety Data Sheet]. https://tsocorpsite.files.wordpress.com/2014/08/utility-fuel-oil.pdf. Accessed 4 November 2015.

  • Yao, S., Zhao, S., Lu, Z., Gao, Y., Lv, F., & Bie, X. (2015). Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Revista Argentina de Microbiología, 47, 344–349.

    Article  Google Scholar 

Download references

Acknowledgments

The research was partially funded by the PTT Research and Technology Institute and the Center of Excellence on Hazardous Substance Management (HSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekawan Luepromchai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laorrattanasak, S., Rongsayamanont, W., Khondee, N. et al. Production and Application of Gordonia westfalica GY40 Biosurfactant for Remediation of Fuel Oil Spill. Water Air Soil Pollut 227, 325 (2016). https://doi.org/10.1007/s11270-016-3031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3031-8

Keywords

Navigation