Skip to main content
Log in

Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy–Brinkman–Forchheimer Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate in this article, the fully developed flow in a fluid-saturated channel filled with a Darcy–Brinkman–Forchheimer porous medium, which is conducted with an electrically varying parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. With the homotopy analysis method (HAM), a particularly effective technique in solving nonlinear problems, analytical approximation series solutions with high accuracy are derived for fluid velocity and the results are illustrated in form of figures. All these flows are new and are presented for the first time in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasbandy S.: The application of the homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007a)

    Article  Google Scholar 

  • Abbasbandy S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transfer 34, 380–387 (2007b)

    Article  Google Scholar 

  • Albrecht T., Grundmann R., Mutschke G., Gerbeth G.: On the stability of the boundary layer subject to a wall-parallel Lorentz force. Phys. Fluids 18, 098103 (2006)

    Article  Google Scholar 

  • Allan F.M.: Derivation of the Adomian decomposition method using the homotopy analysis method. Appl. Math. Comput. 190, 6–14 (2007)

    Article  Google Scholar 

  • Berger T.W., Kim J., Lee C., Lim J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12, 631–649 (2000)

    Article  Google Scholar 

  • Bouremel Y.: Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 12(5), 714–724 (2007)

    Article  Google Scholar 

  • Breuer K.S., Park J., Henoch C.: Actuation and control of a turbulent channel flow using Lorentz forces. Phys. Fluids 16, 897–907 (2004)

    Article  Google Scholar 

  • Crawford C.H., Karniadakis G.E.: Reynolds stress analysis of EMHD-controlled wall turbulence. Part I, Streamwise Forcing. Phys. Fluids 9, 788–806 (1997)

    Article  Google Scholar 

  • Du Y.Q., Karniadakis G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288, 1230–1234 (2000)

    Article  Google Scholar 

  • Gailitis A., Lielausis O.: On a possibility to reduce the hydrodynamic resistance of a plate in a electrolyte. Appl. Magnetohydrodyn. 12, 143–146 (1961)

    Google Scholar 

  • Haji-Sheikh A.: Estimation of average and local heat transfer in parallel plates and circular ducts filled with porous material. ASME J. Heat Transfer 126, 400–409 (2004)

    Article  Google Scholar 

  • Hayat T., Sajid M.: On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007a)

    Article  Google Scholar 

  • Hayat T., Sajid M.: Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. Int. J. Heat Mass Transfer 50, 75–84 (2007b)

    Article  Google Scholar 

  • Henoch C., Stace J.: Experimental investigation of a salt-water turbulent boundary-layer modified by an applied streamwise magnetohydrodynamic body force. Phys. Fluids 7, 1371–1383 (1995)

    Article  Google Scholar 

  • Hooman K.: A perturbation solution for forced convection in a porous-saturated duct. J. Comput. Appl. Math. 211, 57–66 (2008)

    Article  Google Scholar 

  • Kaviany M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer 28, 851–858 (1985)

    Article  Google Scholar 

  • Kim S.J., Lee C.M.: Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Exp. Fluids 28, 252–260 (2000)

    Article  Google Scholar 

  • Kuznetsov A.V.: Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the “Brinkman-Forchheimer-extended Darcy model”. Acta Mechanica 129, 13–24 (1998)

    Article  Google Scholar 

  • Lee J.H., Sung H.J.: Response of a spatially developing turbulent boundary layer to a spanwise oscillating electromagnetic force. J. Turbul. 6, 1–15 (2005)

    Article  Google Scholar 

  • Liao S.J.: Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/ CRC Press, Boca Raton (2003a)

    Book  Google Scholar 

  • Liao S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003b)

    Article  Google Scholar 

  • Liao S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Transfer 48(12), 2529–2539 (2005)

    Article  Google Scholar 

  • Liao S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117(3), 2529–2539 (2006)

    Article  Google Scholar 

  • Liao S.J., Pop I.: Explicit analytic solution for similarity boundary layer equations. Int. J. Heat Mass Transfer 47(1), 75–85 (2004)

    Article  Google Scholar 

  • Liao S.J., Magyari E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones. ZAMP 57(5), 777–792 (2006)

    Article  Google Scholar 

  • Liao S.J., Tan Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007)

    Article  Google Scholar 

  • Magyari, E.: Comment on “Flow of a Weakly Conducting Fluid in a Channel filled with a porous medium” by Pantokratoras, A., Fang, T. Transp. Porous Media (2009) doi:10.1007/s11242-009-9486-y

  • Mutschke G., Gerbeth G., Albrecht T., Grundmann R.: Separation control at hydrofoils using Lorentz forces. Eur. J. Mech. B/Fluids 25, 137–152 (2006)

    Article  Google Scholar 

  • Nakayama A., Koyama H., Kuwahara F.: An analysis on forced convection in a channel filled with a Brinkman–Darcy porous medium: exact and approximate solutions. Warme-und Stoffubertragung 23, 291–295 (1988)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in porous media, third edition. Springer, Berlin (2006)

    Google Scholar 

  • et al.: Forced convection in a fluid-saturated porous-medium channel with isothermal or isoflux boundaries. J. Fluid Mech. 322, 201–214 (1996)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V., Xiong M.: Effects of viscous dissipation and flow work on forced convection in a channel filled by a saturated porous medium. Transp. Porous Media 56, 351–367 (2004)

    Article  Google Scholar 

  • O’Sullivan P.L., Biringen S.: Direct numerical simulation of low Reynolds number turbulent channel flow with EMHD control. Phys. Fluids 10, 1169–1181 (1998)

    Article  Google Scholar 

  • Pantokratoras, A.: Some new parallel flows in weakly conducting fluids with an exponentially decaying Lorentz force. Math. Probl. Eng., Article ID 87814 (2007)

  • Pantokratoras, A., Fang, T.: Flow of a weakly conducting fluid in a channel filled with a porous medium. Transp. Porous Media (2009) doi:10.1007/s11242-009-9470-6

  • Posdziech O., Grundmann R.: Electromagnetic control of seawater flow around circular cylinders. Eur. J. Mech. B/Fluids 20, 255–274 (2001)

    Article  Google Scholar 

  • Poulikakos D., Renken K.: Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity and Brinkman friction. ASME J. Heat Transfer 109, 880–888 (1987)

    Article  Google Scholar 

  • Renken K., Poulikakos D.: Experiment and analysis of forced convective heat transport in a packed bed of spheres. Int. J. Heat Mass Transfer 31, 1399–1408 (1988)

    Article  Google Scholar 

  • Sajid M., Hayat T., Asghar S.: On the analytic solution of the steady flow of a forth grade fluid. Phys. Lett. A 355, 18–26 (2006)

    Article  Google Scholar 

  • Shatrov, V., Gerbeth, G.: Magnetohydrodynamic drag reduction and its efficiency. Phys. Fluids 19(3), Article no.035109 (2007)

    Google Scholar 

  • Spong E., Reizes J.A., Leonardi E.: Efficiency improvements of electromagnetic flow control. Int. J. Heat Fluid Flow 26, 635–655 (2005)

    Article  Google Scholar 

  • Vafai K., Kim S.J.: Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transfer 111, 1103–1106 (1989)

    Article  Google Scholar 

  • Weier T., Gerbeth G.: Control of separated flows by time periodic Lorentz forces. Eur. J. Mech. B/Fluids 23, 835–849 (2004)

    Article  Google Scholar 

  • Weier T., Gerbeth G., Mutschke G., Plantacis E., Lielausis O.: Experiments on cylinder wake stabilization of an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Exp Thermal Fluid Sci. 16, 84–91 (1998)

    Article  Google Scholar 

  • Weier T., Gerbeth G., Mutschke G., Lielausis O., Lammers G.: Control of flow separation using electromagnetic forces. Flow. Turbul. Combust. 71, 5–17 (2003)

    Article  Google Scholar 

  • Yamashita M., Yabushita K., Tsuboi K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A 40, 8403–8416 (2007)

    Article  Google Scholar 

  • Zhu S.P.: A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield. ANZIAM J. 47, 477–494 (2006a)

    Article  Google Scholar 

  • Zhu S.P.: An exact and explicit solution for the valuation of American put options. Quant. Finan. 6, 229–242 (2006b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B.Q., Pantokratoras, A., Fang, T.G. et al. Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy–Brinkman–Forchheimer Porous Medium. Transp Porous Med 85, 131–142 (2010). https://doi.org/10.1007/s11242-010-9550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9550-7

Keywords

Navigation