Skip to main content
Log in

Projective line over the finite quotient ring GF(2)[x]/〈x 3x〉 and quantum entanglement: Theoretical background

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the projective line over the finite quotient ring R ≡ GF(2)[x]/〈x 3x〉. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical \(\mathcal{J}_\diamondsuit \) of the ring. The quotient ring \(\tilde R_\diamondsuit \equiv {{R_\diamondsuit } \mathord{\left/ {\vphantom {{R_\diamondsuit } {\mathcal{J}_\diamondsuit }}} \right. \kern-\nulldelimiterspace} {\mathcal{J}_\diamondsuit }}\) is isomorphic to GF(2) ⊗ GF(2). The projective line over \(\tilde R_\diamondsuit \) features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Törner and F. D. Veldkamp, J. Geom., 42, 180–200 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Saniga and M. Planat, J. Phys. A, 39, 435–440 (2006); math-ph/0506057 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. M. Saniga and M. Planat, Chaos Solitons Fractals (in press); math.NT/0601261 (2006).

  4. F. D. Veldkamp, Geom. Dedicata, 11, 285–308 (1981); “Projective ring planes and their homomorphisms,” in: Rings and Geometry (NATO ASI Ser. C Math. Phys. Sci., Vol. 160, R. Kaya, P. Plaumann, and K. Strambach, eds.), Reidel, Dordrecht (1985), pp. 289–350; “Projective ring planes: Some special cases,” in: Proc. Conf. Combinatorial and Incidence Geometry: Principles and Applications (La Mendola, 1982, Rend. Sem. Mat. Brescia, Vol. 7), Vita e Pensiero, Milan (1984), pp. 609–615.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. D. Veldkamp, “Geometry over rings,” in: Handbook of Incidence Geometry (F. Buekenhout, ed.), North-Holland, Amsterdam (1995), pp. 1033–1084.

    Google Scholar 

  6. J. Hjelmslev, Abh. Math. Sem. Univ. Hamburg, 2, 1–36 (1923); W. Klingenberg, Math. Z., 60, 384–406 (1954); E. Kleinfeld, Illinois J. Math., 3, 403–407 (1959); P. Dembowski, Finite Geometries, Springer, Berlin (1968); D. A. Drake and D. Jungnickel, “Finite Hjelmslev planes and Klingenberg epimorphism,” in: Rings and Geometry (NATO ASI Ser. C Math. Phys. Sci., Vol. 160, R. Kaya, P. Plaumann, and K. Strambach, eds.), Reidel, Dordrecht (1985), pp. 153–231.

    Google Scholar 

  7. J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, Mass. (1994); B. R. McDonald, Finite Rings with Identity (Pure Appl. Math., Vol. 28), Marcel Dekker, New York (1974); R. Raghavendran, Compositio Math., 21, 195–229 (1969).

    Google Scholar 

  8. A. Herzer, “Chain geometries,” in: Handbook of Incidence Geometry (F. Buekenhout, ed.), North-Holland, Amsterdam (1995), pp. 781–842.

    Google Scholar 

  9. A. Blunck and H. Havlicek, Abh. Math. Sem. Univ. Hamburg, 70, 287–299 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Blunck and H. Havlicek, Math. Pannon., 14, 113–127 (2003).

    MATH  MathSciNet  Google Scholar 

  11. H. Havlicek, Quad. Sem. Mat. Brescia, 11, 1–63 (2006); http://www.geometrie.tuwien.ac.at/havlicek/dd-laguerre.pdf.

    Google Scholar 

  12. N. D. Mermin, Rev. Modern Phys., 65, 803–815 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Kochen and E. Specker, J. Math. Mech., 17, 59–87 (1967).

    MATH  MathSciNet  Google Scholar 

  14. M. Saniga and M. Planat, Theor. Math. Phys., 151, No. 2 (2007).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 151, No. 1, pp. 44–53, April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saniga, M., Planat, M. Projective line over the finite quotient ring GF(2)[x]/〈x 3x〉 and quantum entanglement: Theoretical background. Theor Math Phys 151, 474–481 (2007). https://doi.org/10.1007/s11232-007-0035-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0035-y

Keywords

Navigation