Skip to main content
Log in

Theoretical and experimental analysis of the antioxidant features of substituted phenol and aniline model compounds

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Although natural polyphenols have attracted extended attention as antioxidants, there is only limited information available on their structure-activity relationship (SAR). In addition, while often having significant antioxidant activity, amino group-containing compounds have only been sporadically studied. Often, the complex structure makes studying the individual contribution of aromatic OH or NH2 groups on the activity of these antioxidants difficult. In this work, several substituted simple phenols and anilines were selected as model compounds. Both the experimental radical scavenging activity and major structural descriptors have been determined to gain more insights into the potential SAR. Physicochemical properties pertaining to energetic and structural parameters were determined and experimental data gathered from three antioxidant assays to identify fundamental features with reasonable effect on antioxidant activity. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d,p) level to determine the N–H and O–H bond distances, dipole moments, logP values, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbital energies, HOMO-LUMO gaps, radical spin densities, proton affinities, and ionization potentials. The compounds were screened for activity against the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1picrylhydrazyl (DPPH), and peroxyl (ORAC assay) radicals. Based on the results, ABTS antioxidant activity was selected for further investigations to observe correlations with the calculated properties. The HOMO energies, bond-dissociation energy values, HOMO-LUMO gap energies, dipole moment, proton affinity, and the Hammett constants appear to show meaningful correlation with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

HOMO:

highest occupied molecular orbital

LUMO:

lowest unoccupied molecular orbital

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH:

2,2-diphenyl-1-picrylhydrazyl

ORAC:

oxygen radical absorbance capacity

MS:

multiple sclerosis

HAT:

hydrogen atom transfer

SET:

single-electron transfer

SPLET:

sequential proton loss electron transfer

DMSO:

dimethyl sulfoxide

μ (D):

dipole moment

BDE:

bond-dissociation energy

IP:

ionization potential

PA:

proton affinity

σ :

Hammett constant

References

  1. Galkina OV (2003). J Neurochem 7:89–97

    Article  Google Scholar 

  2. Dröge W (2002). Physiol Rev 82:47–95

    Article  Google Scholar 

  3. Knight J (2000). Ann Clin Lab Sci 30:145–158

    CAS  PubMed  Google Scholar 

  4. Bouayed J, Bohn T (2010). Oxidative Med Cell Longev 3:228–237

    Article  Google Scholar 

  5. Slimen B, Najar T, Abderrabba M (2017). J Agric Food Chem 65:675–689

    Article  Google Scholar 

  6. Horton W, Török M (2018) Natural and nature-inspired synthetic small molecule antioxidants in the context of green chemistry., in Green Chemistry: An inclusive Approach (Török, B., Dransfield, T., eds) Elsevier, Oxford, Cph 3.27 pp 963–979

  7. Halake K, Birajdar M, Lee J (2016) J. Ind Eng Chem Res 35:1–7

    Article  CAS  Google Scholar 

  8. Ackerman S, Horton W (2018) Effects of environmental factors on DNA: damage and mutations, in Green Chemistry: An inclusive Approach (Török, B., Dransfield, T. eds) Elsevier, Oxford, Cph 2.4 pp 109–128

  9. Delanty N, Dichter MA (1998). Acta Neurol Scand 98:145–153

    Article  CAS  Google Scholar 

  10. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014). Clin Chim Acta 436:332–347

    Article  CAS  Google Scholar 

  11. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007). Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  12. Halliwell B, Gutteridge J (1990). Methods Enzymol 186:1–85

    Article  CAS  Google Scholar 

  13. Lin M, Beal MF (2006). Nature 443:787–795

    Article  CAS  Google Scholar 

  14. Ames B, Shigenaga M, Hagen T (1993). Proc Natl Acad Sci U S A 90:7915–7922

    Article  CAS  Google Scholar 

  15. Reuter S, Gutpa S, Chaturvedi MM, Aggarwal BB (2010). Free Radic Biol Med 49:1603–1616

    Article  CAS  Google Scholar 

  16. Dai J, Mumper R (2010). Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  17. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004). Am J Clin Nutr 79:727–747

    Article  CAS  Google Scholar 

  18. Shahidi F, Ambigaipalan P (2015). J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  19. Neto CC (2007). Mol Nutr Food Res 51:652–664

    Article  CAS  Google Scholar 

  20. Neto CC (2011). J Sci Food Agric 91:2303–2307

    Article  CAS  Google Scholar 

  21. Xia E, Deng G, Guo Y, Li H (2010). Int J Mol Sci 11:622–646

    Article  CAS  Google Scholar 

  22. Azeredo H (2009). Int J Food Sci Nutr 44:2365–2376

    CAS  Google Scholar 

  23. Butera D, Tesoriere L, Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002). J Agric Food Chem 50:6895–6901

    Article  CAS  Google Scholar 

  24. Gengatharan A, Dykes G, Choo W (2015). LWT - Food Sci Technol 64:645–649

    Article  CAS  Google Scholar 

  25. Swieca M, Gawlik-Dziki U, Dziki D, Baraniak B (2017). Food Chem 221:1451–1457

    Article  CAS  Google Scholar 

  26. Forman HJ, Davies KJ, Ursini F (2014). Free Radic Biol Med 66:24–35

    Article  CAS  Google Scholar 

  27. Kanner J, Harel S, Granit R (2001). J Agric Food Chem 49:5178–5185

    Article  CAS  Google Scholar 

  28. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005). Am J Clin Nutr 81(suppl):230S–242S

    Article  CAS  Google Scholar 

  29. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005). Am J Clin Nutr 81(suppl):243S–255S

    PubMed  Google Scholar 

  30. Hollman P (2014). Arch Biochem Biophys 559:100–105

    Article  CAS  Google Scholar 

  31. Crozier A, Jaganath I, Clifford M (2009). Nat Prod Rep 26:965–1096

    Article  Google Scholar 

  32. Scalbert A, Williamson G (2000). J Nutr 130:2073S–2085S

    Article  CAS  Google Scholar 

  33. Walle T, Hsieh F, DeLegge M, Oatis J, Walle K (2004). Drug Metab Dispos 32:1377–1382

    Article  CAS  Google Scholar 

  34. Foti M, Amorati R (2009). J Pharm Pharmacol 61:1435–1448

    Article  CAS  Google Scholar 

  35. Sarmadi B, Ismail A (2010). Peptides 31:1949–1956

    Article  CAS  Google Scholar 

  36. Klein E, Lukeš V, Cibulková Z (2006) Polovková. J Mol Struct 758:149–159

    Article  CAS  Google Scholar 

  37. Bordwell FG, Zhang XM, Cheng JP (1993). J Org Chem 58:6410–6416

    Article  CAS  Google Scholar 

  38. Török B, Sood A, Bag S, Tulsan R, Ghosh S, Borkin D, Kennedy AR, Melanson M, Madden R, Zhou W, Levine 3rd H, Török M (2013). Biochemistry 52:1137–1148

    Article  Google Scholar 

  39. Valgimigli L, Pratt DA (2015). Acc Chem Res 48:966–975

    Article  CAS  Google Scholar 

  40. Ingold KU, Pratt DA (2014). Chem Rev 114:9022–9046

    Article  CAS  Google Scholar 

  41. Apak R, Özyürek M, Güçlü M, Çapanoğlu E (2016). J Agric Food Chem 64:997–1027

    Article  CAS  Google Scholar 

  42. Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016). J Agric Food Chem 64:1028–1045

    Article  CAS  Google Scholar 

  43. Lu JM, Lin P, Yao Q, Chen C (2010). J Cell Mol Med 14:840–860

    Article  CAS  Google Scholar 

  44. Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B (2017). Struct Chem 28:391–402

    Article  CAS  Google Scholar 

  45. Becke AD (1988). Phys Rev A38:3098–3100

    Article  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988). Phys Rev B37:785–789

    Article  Google Scholar 

  47. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich M, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini, F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski WG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell, Montgomery, JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers EE, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi, M., Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  48. Hansch C, Leo A, Taft W (1991). Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  49. Ali H, Abo-Shady A, Sharaf Eldeen H, Soror H, Shousha W, Abdel-Barry O, Saleh A (2013). Chem Cent J 7:53–62

    Article  Google Scholar 

  50. Ali HM, Ali IH (2015). Med Chem Res 24:987–998

    Article  CAS  Google Scholar 

  51. Rice-Evans C, Miller N, Paganga G (1996). Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  52. Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S (2013). Ann Agric Sci 58:173–181

    Google Scholar 

  53. Niki E (2010). Free Radic Biol Med 49:503–515

    Article  CAS  Google Scholar 

  54. Saqib M, Mahmood A, Akram R, Khalid B, Afzal S, Kamal GM (2015). J Pharm Appl Chem 1:65–71

    Google Scholar 

  55. Alaşalvar C, Soylu MS, Güder A, Albayrak Ç, Apaydin G, Dilek N (2014). Spectrochim Acta A: Mol Biomol Spectr 125:319–327

    Article  Google Scholar 

  56. Zhu Q, Zhang XM, Fry A (1997). Polym Degrad Stab 57:43–50

    Article  CAS  Google Scholar 

  57. Leopoldini M, Russo N, Toscano M (2011). Food Chem 125:288–306

    Article  CAS  Google Scholar 

  58. Mazzone G, Malaj N, Russo N, Toscano M (2013). Food Chem 141:2017–2024

    Article  CAS  Google Scholar 

  59. Xia EQ, Deng GF, Ge YJ, Li HB (2010). Int J Mol Sci 11:622–646

    Article  CAS  Google Scholar 

  60. Szeląg M, Mikulski D, Molski M (2012). J Mol Model 18:2907–2916

    Article  Google Scholar 

  61. Alabugin IV, Brescha S, dos Passos Gomes G (2015). J Phys Org Chem 28:147–162

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the University of Massachusetts Boston.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Béla Török or Marianna Török.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horton, W., Peerannawar, S., Török, B. et al. Theoretical and experimental analysis of the antioxidant features of substituted phenol and aniline model compounds. Struct Chem 30, 23–35 (2019). https://doi.org/10.1007/s11224-018-1183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1183-4

Keywords

Navigation