Skip to main content

Advertisement

Log in

Multilevel structured additive regression

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type. In this paper, we propose a hierarchical or multilevel version of regression models with structured additive predictor where the regression coefficients of a particular nonlinear term may obey another regression model with structured additive predictor. In that sense, the model is composed of a hierarchy of complex structured additive regression models. The proposed model may be regarded as an extended version of a multilevel model with nonlinear covariate terms in every level of the hierarchy. The model framework is also the basis for generalized random slope modeling based on multiplicative random effects. Inference is fully Bayesian and based on Markov chain Monte Carlo simulation techniques. We provide an in depth description of several highly efficient sampling schemes that allow to estimate complex models with several hierarchy levels and a large number of observations within a couple of minutes (often even seconds). We demonstrate the practicability of the approach in a complex application on childhood undernutrition with large sample size and three hierarchy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669–679 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Belitz, C., Lang, S.: Simultaneous selection of variables and smoothing parameters in structured additive regression models. Comput. Stat. Data Anal. 53, 61–81 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Brezger, A., Lang, S.: Generalized structured additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967–991 (2006)

    Article  MathSciNet  Google Scholar 

  • Chan, D., Kohn, R., Nott, D., Kirby, C.: Locally adaptive semiparametric estimation of the mean and variance functions in regression models. J. Comput. Graph. Stat. 15, 915–936 (2006)

    Article  MathSciNet  Google Scholar 

  • Cottet, R., Kohn, R., Nott, D.: Variable selection and model averaging in semiparametric overdispersed generalized linear models. J. Am. Stat. Assoc. 103, 661–671 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing using B-splines and penalized likelihood. Stat. Sci. 11, 89–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression for space-time data: a Bayesian perspective. Stat. Sin. 14, 731–761 (2004)

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. J. R. Stat. Soc., Ser. C, Appl. Stat. 50, 201–220 (2001)

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S., Frühwirth, R.: Data augmentation and MCMC for binary and multinomial logit models. In: Kneib, T., Tutz, G. (eds.) Statistical Modelling and Regression Structures: Festschrift in Honour of Ludwig Fahrmeir, pp. 111–132. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., Rue, H.: Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Stat. Comput. 19, 479–492 (2009)

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S., Wagner, H.: Bayesian variable selection for random intercept modelling of Gaussian and non-Gaussian data. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics, vol. 9, pp. 165–200. Oxford University Press, London (2011)

    Chapter  Google Scholar 

  • Gamerman, D., Moreira, A.R.B., Rue, H.: Space-varying regression models: Specifications and simulation. Comput. Stat. Data Anal. 42, 513–533 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand, A.E.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–534 (2006)

    Article  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R.: Varying-coefficient models. J. R. Stat. Soc. B 55, 757–796 (1993)

    MATH  MathSciNet  Google Scholar 

  • Heinzl, F., Kneib, T., Fahrmeir, L.: Additive mixed models with Dirichlet process mixture and P-spline priors. AStA Adv. Stat. Anal. 96, 47–68 (2012)

    Article  MathSciNet  Google Scholar 

  • Hennerfeind, A., Brezger, A., Fahrmeir, L.: Geoadditive survival models. J. Am. Stat. Assoc. 101, 1065–1075 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, C.C., Held, L.: Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1, 145–168 (2006)

    Article  MathSciNet  Google Scholar 

  • Jullion, A., Lambert, P.: Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Comput. Stat. Data Anal. 51, 2542–2558 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Kamman, E.E., Wand, M.P.: Geoadditive models. J. R. Stat. Soc., Ser. C, Appl. Stat. 52, 1–18 (2003)

    Article  Google Scholar 

  • Klasen, S.: Nutrition, health, and mortality in Sub Saharan Africa: is there a gender bias? J. Dev. Stud. 32, 913–933 (1996)

    Article  Google Scholar 

  • Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc. 105, 852–863 (2010)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13, 183–212 (2004)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Steiner, W., Wechselberger, P.: Accommodating heterogeneity and functional flexibility in store sales models: a Bayesian semiparametric approach. Revised for Marketing Science (2012)

  • Panagiotelis, A., Smith, M.: Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 143, 291–316 (2008)

    Article  MathSciNet  Google Scholar 

  • Papaspiliopoulos, O., Roberts, G.O., Sköld, M.: A general framework for the parametrization of hierarchical models. Stat. Sci. 22, 59–73 (2007)

    Article  MATH  Google Scholar 

  • Park, T., Casella, G.: The Bayesian LASSO. J. Am. Stat. Assoc. 103, 681–686 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. J. R. Stat. Soc., Ser. C, Appl. Stat. 54, 507–554 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Rue, H., Held, L.: Gaussian Markov Random Fields. Chapman & Hall/CRC Press, London/CRC Press (2005)

    Book  MATH  Google Scholar 

  • Rue, H., Martino, S., Nicolas, C.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009)

    Article  MATH  Google Scholar 

  • Ruppert, D.: Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 11, 735–757 (2002)

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Scheipl, F., Fahrmeir, L., Kneib, T.: Function selection in structured additive regression models based on spike-and-slab priors. J. Am. Stat. Assoc. (2012, to appear). doi:10.1080/01621459.2012.737742

  • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317–343 (1996)

    Article  MATH  Google Scholar 

  • Smith, M., Kohn, R.: A Bayesian approach to nonparametric bivariate regression. J. Am. Stat. Assoc. 92, 1522–1535 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Somerfelt, E., Arnold, F.: Sex differentials in the nutritional status of young children. In: United Nations (ed.) Too Young to Die, pp. 133–153. United Nations, New York (1999)

    Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 65, 583–639 (2002)

    Article  Google Scholar 

  • Subramanyam, M.A., Kawachi, I., Berkman, L.F., Subramanian, S.V.: Is economic growth associated with reduction in child undernutrition in India? PLoS Med. 8, 1–15 (2011)

    Article  Google Scholar 

  • WHO: Global Database on Child Growth and Malnutrition. WHO, Department of Nutrition for Health and Development, Geneva (2002)

  • Wood, S.N.: Thin-plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003)

    Article  MATH  Google Scholar 

  • Wood, S.N.: Generalized Additive Models: an Introduction with R. Chapman & Hall, London (2006)

    Google Scholar 

  • Yue, Y., Speckman, P., Sun, D.: Priors for Bayesian adaptive spline smoothing. Ann. Inst. Stat. Math. 64, 577–613 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, S., Umlauf, N., Wechselberger, P. et al. Multilevel structured additive regression. Stat Comput 24, 223–238 (2014). https://doi.org/10.1007/s11222-012-9366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9366-0

Keywords

Navigation