Skip to main content
Log in

Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

  • Published:
Russian Physics Journal Aims and scope

A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34 CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called “niche-potential” and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Dellatore, A. S. Garsia, and W. M. Miller, Curr. Opin. Biotechnol., 19, 534–540 (2008).

    Article  Google Scholar 

  2. N. J. Sniadecki, R. A. Desai, S. A. Ruiz, and C. S. Chen, Ann. Biomed. Eng., 34, 59–74 (2006).

    Article  Google Scholar 

  3. R. Ravichandran, S. Liao, C. C. H. Ng, et al., World J. Stem Cells, 1 (1), 55–66 (2009), doi: 10.4252/wjsc.v1.i.1.55.

    Article  Google Scholar 

  4. J. H. Sung and M. I. Shuler, Bioproc. Biosyst. Eng., 33, 5–19 (2010).

    Article  Google Scholar 

  5. J. El-Ali, P. K. Sorger, and K. F. Jensen, Nature, 442, 403–411 (2006).

    Article  ADS  Google Scholar 

  6. M. P. Lutolf, P. M. Gilbert, and H. M. Blau, Nature, 462, 433–441 (2009).

    Article  ADS  Google Scholar 

  7. M. P. Lutolf, R. Doyonnas, K. Havenstrite, et al., Integr. Biol. (Camb.), 1, 59–69 (2009).

    Article  Google Scholar 

  8. C. M. Kolf, E. Cho, and R. S. Tuan, Arthritis Res. Ther., 9, 204–219 (2007).

    Article  Google Scholar 

  9. A. S. Curtis and M. Varde, J. Natl. Cancer. Inst., 33, 15–26 (1964).

    Google Scholar 

  10. I. A. Khlusov, M. Yu. Khlusova, K. V. Zaitsev, et al., Klet. Tekhnol. Biol. Med., No. 4, 216–224 (2010).

  11. I. A. Khlusov, N. M. Shevtsova, M. Yu. Khlusova, et al., Klet. Tekhnol. Biol. Med., VI, No. 2, 55–64 (2011).

  12. I. A. Khlusov, A. V. Karlov, Yu. P. Sharkeev, et al., Klet. Tekhnol. Biol. Med., No. 3, 164–173 (2005).

  13. I. A. Khlusov, A. V. Karlov, N. S. Pozhenko, et al., Bull. Exp. Biol. Med., 141, No. 1, 107–112 (2006).

    Article  Google Scholar 

  14. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, eds., Biomaterials Science: an Introduction to Materials in Medicine, 2nd ed., Elsevier Inc. (2004).

  15. I. O. Smith, M. J. Baumann, and L. R. McCabe, J. Biomed. Mater. Res. A70, 436–441 (2004).

    Google Scholar 

  16. R. Smeets, A. Kolk, M. Gerressen, et al., Head Face Med., 5, 13 (2009).

    Article  Google Scholar 

  17. A. V. Karlov, I. A. Khlusov, K. V. Zaitsev, et al., Byull.Sib. Otd. Ross. Akad. Med. Nauk, 30, No. 3, 105–112 (2010).

  18. Yu. Dekhtyar, M. V. Dvornichenko, A. V. Karlov, et al., WC, IFMBE Proceedings, 25, 245–248 (2009).

  19. Yu. P. Sharkeev, E. V. Legostaeva, A. Yu. Eroshenko, et al., Compos. Interfac., 16, 535–546 (2009).

    Article  Google Scholar 

  20. M. V. Chaikina, I. A. Khlusov, A. V. Karlov, and K. S. Paichadze, Khim. v Inter. Ustoich, Razvit., 12, 389–399 (2004).

    Google Scholar 

  21. É. A. Gostishchev, R. A. Surmenev, I. A. Khlusov, and V. F. Pitchugin, Izv. Tomsk. Politekhn. Univ., 319, No. 2, 108–113 (2011).

    Google Scholar 

  22. V. V. Men’shikov, ed., Laboratory Methods of Examination in a Clinic: A Handbook [in Russian], Meditsina, Moscow (1987).

    Google Scholar 

  23. D. E. Discher, D. J. Mooney, and P. W. Zandstra, Science, 324, 1673–1677 (2009).

    Article  ADS  Google Scholar 

  24. A. J. Friedenstein, in: Bone and Mineral Research, J. N. M. Heershe and J. A. Kanis, eds., Elsevier Science Publishers, Amsterdam (1990), pp. 243–272.

  25. B. L. Riggs and L. J. Melton III, Osteoporosis [Russian translation], BINOM Publishing House, Sankt Petersburg (2000).

    Google Scholar 

  26. Q. He, C. Wan, and G. Li, Stem Cells, 25, 69–77.

  27. J. Ferrier, S. M. Ross, J. Kanehisa, and J. E. Aubin, J. Cell. Physiol., 129 (3), 283–288 (1986).

    Google Scholar 

  28. M. Hamdan, L. Blanco, A. Khraisat, and I. E. Tresguerres, Clin. Implant. Dent. Relat. Res., 8 (1), 32–38 (2006).

    Article  Google Scholar 

  29. M. Zhao, B. Song, J. Pu, et al., Nature, 442, 457–460 (2006).

    Article  ADS  Google Scholar 

  30. J. F. Heubach, E. M. Graf, J. Leutheuser, et al., J. Physiol., 554, 659–672 (2004).

    Article  Google Scholar 

  31. V. O. Samoilov, Medical Biophysics [in Russian], SpetsLit, Sankt Petersburg (2007).

    Google Scholar 

  32. I. A. Khlusov, M. Yu. Khlusova, N. M. Shevtsova, et al., Byull. Sib. Medits., No. 6, 96–105 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khlusov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 92–97, October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlusov, I.A., Khlusova, M.Y., Pichugin, V.F. et al. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials. Russ Phys J 56, 1206–1211 (2014). https://doi.org/10.1007/s11182-014-0163-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0163-4

Keywords

Navigation