Skip to main content
Log in

Efficient aldol condensation by using modified CaO as solid-base catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A new type of solid-base catalyst for aldol condensation reaction was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyze the aldol condensation of acetophenone and benzaldehyde to produce chalcone with a high conversion and good selectivity. The catalyst gave a higher yield (90.5%) of chalcone than commercial CaO. The high catalytic activity and stability of this catalyst was related to the organic modifier with a hydrophilic functional group that improved the diffusion of grease to the catalyst surface and prevented its hydration. The influence of several reaction parameters, such as temperature, catalyst loading and the moisture absorption rate of modified CaO, was investigated. From the results, the basic centers of modified CaO are stable and hardly poisoned by CO2 unlike commercial CaO. The catalyst was completely recyclable without significant loss in activity up to five reaction cycles. Moreover, this catalyst showed a promising future in providing an environmentally clean process for the industrial sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. J.C.A.A. Roelofs, D.J. Lensveld, A.J. van Dillen, K.P. de Jong, J. Catal. 203, 184–191 (2001)

    Article  CAS  Google Scholar 

  2. I. Cota, R. Chimentao, J. Sueiras, F. Medina, Catal. Comm. 9, 2090–2094 (2008)

    Article  CAS  Google Scholar 

  3. L. Zhong, Q. Gao, J.B. Gao, C. Li, J. Catal. 250, 360–364 (2007)

    Article  CAS  Google Scholar 

  4. Y. Ono, J. Catal. 216, 406 (2003)

    Article  CAS  Google Scholar 

  5. H. Hattori, Appl. Catal. A 222, 247 (2001)

    Article  CAS  Google Scholar 

  6. K. Tanabe, W.F. Hölderich, Appl. Catal. A 181, 399 (1999)

    Article  CAS  Google Scholar 

  7. Y.W. Xie, K.K. Sharma, A. Anan, G. Wang, A.V. Biradar, T. Asefa, J. Catal. 265, 131–140 (2009)

    Article  CAS  Google Scholar 

  8. G.G. Podrebarac, F.T.T. Ng, G.L. Rempel, Chem. Eng. Sci. 52, 2991–3002 (1997)

    Article  CAS  Google Scholar 

  9. V. Serra-Holm, T. Salmi, J. Multamäki, J. Reinik, P. Mäki-Arvela, R. Sjöholm, L.P. Lindfors, Appl. Catal. A 198, 207–221 (2000)

    Article  CAS  Google Scholar 

  10. V. Raju, R. Radhakrishnan, S. Jaenicke, G.K. Chuah, Catal. Today 164, 139–142 (2011)

    Article  CAS  Google Scholar 

  11. J.M. Clacens, D. Genuit, L. Delmotte, A. Garcia-Ruiz, G. Bergeret, R. Montiel, J. Lopez, F. Figueras, J. Catal. 221, 483–490 (2004)

    Article  CAS  Google Scholar 

  12. H.H. Liu, W.J. Xu, X.H. Liu, Y. Guo, Y.L. Guo, G.Z. Lu, Y.Q. Wang, Kinet. Catal. 51, 75–80 (2010)

    Article  CAS  Google Scholar 

  13. D. Tichit, D. Lutic, B. Coq, R. Durand, R. Teissier, J. Catal. 219, 167–175 (2003)

    Article  CAS  Google Scholar 

  14. W.J. Ji, Y. Chen, H.H. Kung, Appl. Catal. A 161, 93–104 (1997)

    Article  CAS  Google Scholar 

  15. M.J. Climent, A. Corma, S. Iborra, A. Veltry, Catal. Lett. 79, 157–162 (2002)

    Article  CAS  Google Scholar 

  16. V.K. Díez, J.I. Di Cosimo, C.R. Apesteguía, J. Catal 240, 235–244 (2006)

    Article  Google Scholar 

  17. K. Ebitani, K. Motokura, K. Mori, T. Mizugaki, K. Kaneda, J. Org. Chem. 71, 5440–5447 (2006)

    Article  CAS  Google Scholar 

  18. S. Abelló, D. Bijaya-Shankar, J. Pérez-Ramírez, Appl. Catal. A 342, 119–125 (2008)

    Article  Google Scholar 

  19. L.C. Meher, M.G. Kulkarni, A.K. Dalai, S.N. Naik, Eur. J. Lipid Sci. Technol. 108, 389–397 (2006)

    Article  CAS  Google Scholar 

  20. C. Ngamcharussrivichai, W. Wiwatnimit, S. Wangnoi, J. Mol. Catal. A 272, 24–33 (2007)

    Google Scholar 

  21. J. Lopez, J. Sanchez Valente, J.M. Clacens, F. Figueras, J. Catal. 208, 30–37 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from Natural Science Research Plan Projects of Shaanxi Science and Technology Department (2011JQ2014), Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 11JK0591) and the Open Founds of the Shanghai Key Laboratory of Green Chemistry and Chemical Process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Chen, G. & Lu, Y. Efficient aldol condensation by using modified CaO as solid-base catalysts. Res Chem Intermed 38, 937–946 (2012). https://doi.org/10.1007/s11164-011-0430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0430-8

Keywords

Navigation