Skip to main content
Log in

On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the frequency spectra of the radar signals scattered from the wind waves on the sea surface in the full-scale experiment. Two types of the radar Doppler shifts of the spectrum maximum, namely, the averaged shift of the instantaneous spectrum of the scattered signal and the shift of the maximum of the signal time-averaged spectrum as functions of the incidence angle and the wind velocity and direction are analyzed for different sounding-wave polarizations. Significant difference between the average shift of the instantaneous spectrum and the shift of the average-spectrum maximum is demonstrated. This difference is attributed to the radar-signal modulation effect in the field of long surface waves. The obtained results are very important for correct retrieval of the velocities of the surface currents using the data of the satellite-borne measurements of the radar Doppler shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S.Monin and V. P. Krasitskii, Phenomena on the Ocean Surface [in Russian], Gidrometeoizdat, Leningrad (1985).

    Google Scholar 

  2. S. V. Viktorov and L. M. Mitnik, eds., Radar Observations of the Earth’s Surface from Space [in Russian], Gidrometeoizdat, Leningrad (1990).

    Google Scholar 

  3. M. G. Bulatov, Yu. A. Kravtsov, O. Yu. Lavrova, et al., Physics—Uspekhi, 46, No. 1, 63 (2003).

    ADS  Google Scholar 

  4. O. Yu. Lavrova, A. G. Kostyanoy, S.A. Lebedev, et al., Complex Satellite Monitoring of the Seas of Russia [in Russian], Inst. Space Res., Moscow (2011).

    Google Scholar 

  5. B. Chapron, F. Collard, and F. Ardhuin, J. Geophys. Res., 110, C07008 (2005).

    ADS  Google Scholar 

  6. A. A. Mouche, F. Collard, B. Chapron, et al., IEEE Trans. Geosci. Remote Sensing, 50, No. 7, 2901 (2012).

    Article  ADS  Google Scholar 

  7. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Pergamon Press, Oxford (1979).

    Google Scholar 

  8. S. M. Rytov, Yu. A.Kravtsov, and V. I.Tatarskii, Principles of Statistical Radiophysics, Springer–Verlag, Berlin (1989).

    Google Scholar 

  9. M. S. Longuett-Higgins, J. Fluid Mech., 16, 138 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. K. D. Ruvinskii, F. I. Feldstein, and G. I. Freidman, J. Fluid Mech., 230, 339 (1991).

    Article  ADS  Google Scholar 

  11. S. A. Ermakov, K. D. Ruvinskii, S. G. Salashin, and G. I.Freidman, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 22, No. 10, 1072 (1986).

    Google Scholar 

  12. M. Longuet-Higgins, J. Fluid Mech., 301, 79 (1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. W. J. Plant, W. C.Keller, V. Hesany, et al., J. Geophys. Res., 104, No. 2, 3243 (1999).

    Article  ADS  Google Scholar 

  14. M. Gade, W. Alpers, S. A. Ermakov, et al., J. Geophys. Res., 103, No. 10, 21697 (1998).

    Article  ADS  Google Scholar 

  15. S. A. Ermakov, I. A. Kapustin, and I. A. Sergievskaya, Bull. Rus. Acad. Sci. Phys., 74, No. 12, 1695 (2010).

    Article  Google Scholar 

  16. S. A. Ermakov, I. A. Kapustin, and I. A. Sergievskaya, Radiophys. Quantum Electron., 55, No. 7, 453 (2012).

    Article  ADS  Google Scholar 

  17. V. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, J. Geophys. Res., 108, No. 3, 8054 (2003).

    Article  ADS  Google Scholar 

  18. V. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, J. Geophys. Res., 108, No. 3, 1 (2003).

    Google Scholar 

  19. V. Kudryavtsev, D. Akimov, J. Johannessen, and B. Chapron, J. Geophys. Res., 110, 07016 (2005).

    Article  ADS  Google Scholar 

  20. T. Hara and W. J. Plant, J. Geophys. Res., 99, No. 5, 9767 (1994).

    Article  ADS  Google Scholar 

  21. S. A. Ermakov, I. A. Sergievskaya, and Yu. B. Shchegolkov, Radiophys. Quantum Electron., 25, No. 12, 942 (2002).

    Article  ADS  Google Scholar 

  22. S. A. Ermakov, I. A. Sergievskaya, E. M. Zuykova, and Yu. B. Shchegolkov, Izvestiya, Atmos. Ocean. Phys., 40, No. 1, 91 (2004).

    Google Scholar 

  23. V. N. Kudryavtsev, V. K. Makin, and B. Chapron, J. Geophys. Res., 104, 7625 (1999).

    Article  ADS  Google Scholar 

  24. A. Rosenberg, M. Ritter, W.K. Melvillle, et al., IEEE Trans. Geosci. Remote Sensing, 37, No. 2, 1052 (1999).

    Article  ADS  Google Scholar 

  25. P. H. Y. Lee, J. D. Barter, K. L. Beach, et al., J. Geophys. Res., 100, No. 2, 2591 (1995).

    Article  ADS  Google Scholar 

  26. Yu. A. Kravtsov, M. I. Mityagina, and A. N. Churyumov, Radiophys. Quantum Electron., 42, No. 3, 216 (1999).

    Article  ADS  Google Scholar 

  27. W. J. Plant, J. Geophys. Res., 87, No. 1, 1961 (1982).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ermakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 4, pp. 267–280, April 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, S.A., Kapustin, I.A., Kudryavtsev, V.N. et al. On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface. Radiophys Quantum El 57, 239–250 (2014). https://doi.org/10.1007/s11141-014-9507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9507-8

Keywords

Navigation