Skip to main content
Log in

A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Enhancer of Zeste Polycomb group proteins, which are encoded by a small gene family in Arabidopsis thaliana, participate to the control of plant development. In the tomato (Solanum lycopersicum), these proteins are encoded by three genes (SlEZ1, SlEZ2 and SlEZ3) that display specific expression profiles. Using a gene specific RNAi strategy, we demonstrate that repression of SlEZ2 correlates with a general reduction of H3K27me3 levels, indicating that SlEZ2 is part of an active PRC2 complex. Reduction of SlEZ2 gene expression impacts the vegetative development of tomato plants, consistent with SlEZ2 having retained at least some of the functions of the Arabidopsis CURLY LEAF (CLF) protein. Notwithstanding, we observed significant differences between transgenic SlEZ2 RNAi tomato plants and Arabidopsis clf mutants. First, we found that reduced SlEZ2 expression has dramatic effects on tomato fruit development and ripening, functions not described in Arabidopsis for the CLF protein. In addition, repression of SlEZ2 has no significant effect on the flowering time or the control of flower organ identity, in contrast to the Arabidopsis clf mutation. Taken together, our results are consistent with a diversification of the function of CLF orthologues in plants, and indicate that although partly conserved amongst plants, the function of EZ proteins need to be newly investigated for non-model plants because they might have been recruited to specific developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ach RA, Taranto P, Gruissem W (1997) A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. The Plant Cell Online 9:1595–1606

    Article  CAS  Google Scholar 

  • Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141:4219–4230

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin F, Wu X, Li F et al (2009) Functional characterization of the arabidopsis β-ketoacyl-coenzyme a reductase candidates of the fatty acid elongase. plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12:1529–1534

    Article  CAS  PubMed  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Bird D, Beisson F, Brigham A et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  CAS  PubMed  Google Scholar 

  • Blackledge Neil P, Farcas Anca M, Kondo T, King Hamish W, McGouran Joanna F, Hanssen Lars L, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long Hannah K, Sheahan Thomas W, Brockdorff N, Kessler Benedikt M, Koseki H, Klose Robert J (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubés J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou J-P, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butenko Y, Ohad N (2011) Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim Biophys Acta 1809:395–406

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 Lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Chaïb J, Devaux M-F, Grotte M-G, Robini K, Causse M, Lahaye M, Marty I (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58:1915–1925

    Article  PubMed  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Kong J, Qin C, Sheng Y, Tan J, Chen Y-r WuC, Wang H, Shi Y, Li C, Li B, Zhang P, Wang Y, Lai T, Yu Z, Zhang X, Shi N, Wang H, Osman T, Liu Y, Manning K, Jackson S, Rolin D, Zhong S, Seymour GB, Gallusci P, Hong Y (2015) Requirement of CHROMOMETHYLASE3 for somatic inheritance of spontaneous tomato epimutation Colourless non-ripening. Sci Rep 5:9192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium TTG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111:185–196

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C (2004) Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J 40:344–354

    Article  CAS  PubMed  Google Scholar 

  • De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105:16831–16836

    Article  PubMed  PubMed Central  Google Scholar 

  • Derkacheva M, Steinbach Y, Wildhaber T, Mozgová I, Mahrez W, Nanni P, Bischof S, Gruissem W, Hennig L (2013) Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J 32:2073–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domergue F, Vishwanath SJ, Joubés J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, Rowland O (2010) Three Arabidopsis fatty acyl-coenzyme a reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153:1539–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X, Sarid-Krebs L, Goodrich J, Turck F (2011) Tissue-specific expression of flowering locus T in arabidopsis is maintained independently of polycomb group protein repression. Plant Cell 23:3204–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure JD, Vittorioso P, Santoni V et al (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918

    CAS  PubMed  Google Scholar 

  • Fei Z, Joung J-G, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, Alba R, Klee HJ, Giovannoni JJ (2011) Tomato functional genomics database: a comprehensive resource and analysis package for tomato functional genomics. Nucl Acids Res 39:D1156–D1163

    Article  CAS  PubMed  Google Scholar 

  • Gallusci P, Salamini F, Thompson RD (1994) Differences in cell type-specific expression of the gene Opaque 2 in maize and transgenic tobacco. Mol Gen Genet 244:391–400

    Article  CAS  PubMed  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The vernalization 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  CAS  PubMed  Google Scholar 

  • Gendrel A-V, Lippman Z, Martienssen R, Colot V (2005) Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2:213–218

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    Article  CAS  PubMed  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    Article  CAS  PubMed  Google Scholar 

  • Grimaud C, Negre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14:363–375

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus U, Vielle-Cazalda JP, Hoepner MA, Gagliano W (1998) maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis thaliana. Science 280:448–449

    Article  Google Scholar 

  • Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 199:121–152

    Article  Google Scholar 

  • Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25:414–423

    Article  CAS  PubMed  Google Scholar 

  • Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302

    Article  CAS  PubMed  Google Scholar 

  • Holec S, Berger F (2012) Polycomb group complexes mediate developmental transitions in plants. Plant Physiol 158:35–43

    Article  CAS  PubMed  Google Scholar 

  • How Kit A, Boureau L, Stammitti-Bert L, Rolin D, Teyssier E, Gallusci P (2010) Functional analysis of SlEZ1 a tomato enhancer of zeste (E(z)) gene demonstrates a role in flower development. Plant Mol Biol 74:201–213

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G, Theres K, McCormick S, Tsiantis M (2008) PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant j 56:603–612

    Article  CAS  PubMed  Google Scholar 

  • Javelle M, Vernoud V, Rogowsky PM et al (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytol 189:17–39

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Wang Y, Wang Y, He Y (2008) Repression of flowering locus C and flowering locus T by the Arabidopsis polycomb repressive complex 2 components. PLoS ONE 3:e3404

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and curly leaf polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Sung S (2014) Polycomb-mediated gene silencing in Arabidopsis thaliana. Mol Cells 37:841–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci USA 98:14156–14161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fisher RL (1999) Control of fertilization independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler C, Hennig L (2010) Regulation of cell identity by plant Polycomb and trithorax group proteins. Curr Opin Genet Dev 20:541–547

    Article  PubMed  Google Scholar 

  • Köhler C, Villar CBR (2008) Programming of gene expression by Polycomb group proteins. Trends Cell Biol 18:236–243

    Article  PubMed  Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzmichev ARD, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Lucas JR, Goodrich J, Sack FD (2014) Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes. Plant J 78:566–577

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou B, Peng X, Kuang Q, Huang X, Yao J, Du B, Sun M-X (2013) OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytol 201:66–79

    Article  PubMed  Google Scholar 

  • Liu D-D, Dong Q-L, Fang M-J, Chen K-Q, Hao Y-J (2012) Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. J Plant Physiol 169:1866–1873

    Article  CAS  PubMed  Google Scholar 

  • Liu R, How Kit A, Stammitti L et al (2015) A demeter-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci USA 112:10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Bilodeu P, Dennis ES, Peacock JW, Chaudhury AML (2000) Expression and parent-of-origin effects for FIS2, E(Z), and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occuring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Mayama T, Ohtsubo E, Tsuchimoto S (2003) Isolation and expression analysis of petunia curly leaf-like genes. Plant Cell Physiol 44:811–819

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Takebayashi N, Wolf DE (2009) Possible diversifying selection in the imprinted gene, medea, in Arabidopsis. Mol Biol Evol 26:843–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molitor A, Shen W-H (2013) The polycomb complex PRC1: composition and function in plants. J Genet Genomics 40:231–238

    Article  CAS  PubMed  Google Scholar 

  • Molitor AM, Bu Z, Yu Y, Shen W-H (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10:e1004091

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    Article  CAS  PubMed  Google Scholar 

  • Moyle LC (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62:2995–3013

    Article  PubMed  Google Scholar 

  • Mozgova I, Köhler C, Hennig L (2015) Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. Plant J. doi:10.1111/tpj.12828

    Google Scholar 

  • Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a drosophila polycomb group repressor complex. Cell 111:197–208

    Article  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlando V, Paro R (1995) Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev 5:174–179

    Article  CAS  PubMed  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T et al (2007) The Arabidopsis desperado/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit J, Bres C, Just D, Garcia V, Mauxion J-P, Marion D, Bakan B, Joubés J, Domergue F, Rothan C (2014) Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase. Plant Physiol 164:888–906

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AMG (2008) Sexual and apomictic seed formation in hieracium requires the plant polycomb-group gene fertilization independent endosperm. Plant cell 20:2372–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8:553–561

    Article  CAS  PubMed  Google Scholar 

  • Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H (2010) Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–312

    Article  CAS  PubMed  Google Scholar 

  • Spillane C, MacDougall C, Stock C, Kohler C, Vielle-Gazalda JP, Nunes SM, Grossniklaus U, Goodrich J (2000) Interaction of the Arabidopsis polycomb group proteins FIE and E(Z) mediates their common phenotypes. Curr Biol 10:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352

    Article  CAS  PubMed  Google Scholar 

  • Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang Z, Keyhaninejad N, Mu Q, Sun L, Wang Y, Wu S (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in polycomb silencing. Nature 431:873–878

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Tyson MD, Jackson SS, Yadegari R (2006) Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci USA 103:13244–13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C (2010) H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 6:e1001152

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes vernalization insensitive 3. Proc Natl Acad Sci USA 103:14631–14636

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Wagner D (2015) Polycomb repression in the regulation of growth and development in Arabidopsis. Curr Opin Plant Biol 23:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and E(Z) genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M (2013) AL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr Biol 23:1324–1329

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) Embryonic flower2, a novel polycomb group protein homolog, mediates shoot development and flowering in arabidopsis. Plant Cell Online 13:2471–2481

    Article  CAS  Google Scholar 

  • Zhong S, Fei Z, Chen Y-R, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotech 31:154–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

LB and AHK were in receipt of a grant from the French Ministry of Research and Higher Education and MR from the Italian Ministry of Agriculture. Research work was in part funded by the French National Research Agency in the Frame of the ENDOREPIGENE project, by the Research Federation, Integrative Biology and Environment (FR BIE) and by the National Transgenic Program of China (2016ZX08009-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Hong or P. Gallusci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boureau, L., How-Kit, A., Teyssier, E. et al. A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants. Plant Mol Biol 90, 485–501 (2016). https://doi.org/10.1007/s11103-016-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0436-0

Keywords

Navigation