Skip to main content

Advertisement

Log in

Stimulation of Phagocytic Activity of Alveolar Macrophages Toward Artificial Microspheres by Infection with Mycobacteria

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to know the effect of uptake of mycobacteria on the phagocytic activity of alveolar macrophage (Mφ) cells toward poly(lactic-co-glycolic) acid (PLGA) microspheres (MS) loaded with the anti-tuberculosis agent rifampicin (RFP-PLGA MS).

Materials and Methods

Biological functions such as phagocytic activity toward PLGA MS loaded with fluorescent coumarin (cPLGA MS) and toward polystyrene latex MS (PSL MS), and generation of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were examined using alveolar Mφ cell NR8383 after they had phagocytosed Mycobacterium bovis Calmette-Guérin (BCG), heat-killed BCG (h-kBCG) or Escherichia coli.

Results

The ingestion of BCG, h-kBCG, and E. coli did not affect the viability of the Mφ cells within 2 days. The phagocytosis caused generation of TNF-α and NO, being more significant with E. coli than with both types of BCGs. The phagocytosis of both types of BCGs stimulated the phagocytic uptake of cPLGA and PSL MS’s, which took place prior to the generation of TNF-α or NO, but that of E. coli suppressed the uptake of both MS’s.

Conclusion

Mycobacterial infection stimulated the phagocytic uptake toward cPLGA MS. These results suggest that RFP-PLGA MS is favorable for overcoming tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BCG:

Mycobacterium bovis Calmette-Guérin

h-kBCG:

heat-killed BCG

CFU:

colony-forming units

ELISA:

enzyme-linked immunosorbent assay

FBS:

fetal bovine serum

Mφ:

macrophage

MOI:

multiplicity of infection

MTB:

Mycobacterium tuberculosis

MS:

microspheres

NO:

nitric oxide

PBS:

phosphate-buffered saline

PLGA:

poly(lactic-co-glycolic) acid

cPLGA MS:

PLGA MS loaded with coumarin 6

RFP-PLGA MS:

PLGA MS loaded with rifampicin

PSL MS:

polystyrene latex MS

RFP:

rifampicin

TNF-α:

tumor necrosis factor-α

WST-8:

2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt

References

  1. D. H. Bowden. The alveolar macrophage. Environ. Health Perspect. 55:327–341 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. S. Mukherjee, R. N. Ghosh, and F. R. Maxfield. Endocytosis. Physiol. Rev. 77:759–803 (1997).

    PubMed  CAS  Google Scholar 

  3. G. Ferrari, H. Langen, M. Naito, and J. Pieters. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435–447 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. S. Sturgill-Koszycki, P. H. Schlesinger, P. Chakraborty, P. L. Haddix, H. L. Collins, A. K. Fok, R. D. Allen, S. L. Gluck, J. Heuser, and D. G. Russell. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. K. Makino, T. Nakajima, M. Shikamura, F. Ito, S. Ando, C. Kochi, H. Inagawa, G. Soma, and H. Terada. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf. B 36:35–42 (2004).

    Article  CAS  Google Scholar 

  6. A. Yoshida, M. Matumoto, H. Hshizume, Y. Oba, T. Tomishige, H. Inagawa, C. Kohchi, M. Hino, F. Ito, K. Tomoda, T. Nakajima, K. Makino, H. Terada, and G. Soma. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin. Microbes. Infect. 8:2484–2491 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. R. Sharma, P. Muttil, A. B. Yadav, S. K. Rath, V. K. Bajpai, U. Mani, and A. Misra. Uptake of inhalable microparticles affects defense responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J. Antimicrob. Chemother. 59:499–506 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Z. Xing, A. Zganiacz, and M. Santosuosso. Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-α and nitric oxide from macrophages via IFN-γ induction. J. Leukoc. Biol. 68:897–902 (2000).

    PubMed  CAS  Google Scholar 

  9. C. H. Wang and H. P. Kuo. Nitric oxide modulates interleukin-1β and tumour necrosis factor-α synthesis, and disease regression by alveolar macrophages in pulmonary tuberculosis. Respirology 6:79–84 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. L. Flynn, M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer, C. J. Lowenstein, R. Schrelber, T. W. Mak, and B. R. Bloom. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. S. E. Valone, E. A. Rich, R. S. Wallis, and J. J. Ellener. Expression of tumor necrosis factor in vitro by human mononuclear phagocytes stimulated with whole Mycobacterium bovis BCG and mycobacterial antigens. Infect. Immun. 56:3313–3315 (1988).

    PubMed  CAS  Google Scholar 

  12. A. Aderem. Phagocytosis and the inflammatory response. J. Infect. Dis. 187(Suppl 2):S340–S345 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. P. Henneke, O. Takeuchi, R. Malley, E. Lien, R. R. Ingalls, M. W. Freeman, T. Mayadas, V. Nizet, S. Akira, D. L. Kasper, and D. T. Golenbock. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J. Immunol. 169:3970–3977 (2002).

    PubMed  CAS  Google Scholar 

  14. B. J. van Lenten and A. M. Fogelman. Lipopolysaccharide-induced inhibition of scavenger receptor expression in human monocyte-macrophages is mediated through tumor necrosis factor-α. J. Immunol. 148:112–116 (1992).

    PubMed  Google Scholar 

  15. J. E. Albina, S. Cui, R. B. Mateo, and J. S. Reichner. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150:5080–5085 (1993).

    PubMed  CAS  Google Scholar 

  16. S. Akira, K. Takeda, and T. Kaisho. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675–680 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. J. Panyam, W. Zhou, S. Prabha, S. K. Sahoo, and V. Labhasetwar. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16:1217–1226 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. K. Tomoda, S. Kojima, M. Kajimoto, D. Watanabe, T. Nakajima, and K. Makino. Effects of pulmonary surfactant system on rifampicin release from rifampicin-loaded PLGA microspheres. Colloids Surf. B 45:1–6 (2005).

    Article  CAS  Google Scholar 

  19. T. Hasegawa, K. Hirota, K. Tomoda, F. Ito, H. Inagawa, C. Kochi, G. Soma, K. Makino, and H. Terada. Phagocytic activity of alveolar macrophages toward polystyrene latex microspheres and PLGA microspheres loaded with anti-tuberculosis agent. Colloids Surf. B 60:221–228 (2007).

    Article  CAS  Google Scholar 

  20. T. Hasegawa, K. Iijima, K. Hirota, T. Nakajima, K. Makino, and H. Terada. Exact determination of phagocytic activity of alveolar macrophages toward polymer microspheres by elimination of those attached to the macrophage membrane. Colloids Surf. B (in press).

  21. H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K. Suzuki, and M. Watanabe. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 36:47–50 (1999).

    Article  CAS  Google Scholar 

  22. B. G. Jones, P. A. Dickinson, M. Gumbleton, and I. W. Kellaway. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int. J. Pharm. 236:65–79 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. S. Ben-Efraim and T. Diamantstein. Mitogenic and adjuvant activity of a methanol extraction residue (MER) of tubercle bacilli on mouse lymphoid cells in vitro. Immunol. Commun. 4:565–577 (1975).

    PubMed  CAS  Google Scholar 

  24. I. Azuma, T. Taniyama, K. Sugimura, A. A. Aladin, and Y. Yamamura. Mitogenic activity of the cell walls of mycobacteria, nocardia, corynebacteria and anaerobic coryneforms. Jpn. J. Microbiol. 20:263–271 (1976).

    PubMed  CAS  Google Scholar 

  25. A. P. Gobert, S. Semballa, S. Daulouede, S. Lesthelle, M. Taxile, B. Veyret, and P. Vincendeau. Murine macrophages use oxygen- and nitric oxide-dependent mechanisms to synthesize S-nitroso-albumin and to kill extracellular trypanosomes. Infect. Immun. 66:4068–4072 (1998).

    PubMed  CAS  Google Scholar 

  26. G. S. Timmins, S. Master, F. Rusnak, and V. Deretic. Requirements for nitric oxide generation from isoniazid activation in vitro and inhibition of mycobacterial respiration in vivo. J. Bacteriol. 186:5427–5431 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87:1620–1624 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. K. Hirota, T. Hasegawa, H. Hinata, F. Ito, H. Inagawa, C. Kochi, G. Soma, K. Makino, and H. Terada. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J. Control. Release 119:69–76 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Tabata and Y. Ikada. Phagocytosis of polymer microspheres by macrophages. In Advances in Polymer Science, vol. 94. Springer, Berlin, 1990, pp. 107–141.

  30. H. Kawaguchi, N. Koiwai, Y. Ohtsuka, M. Miyamoto, and S. Sasakawa. Phagocytosis of latex particles by leucocytes. I. Dependence of phagocytosis on the size and surface potential of particles. Biomaterials 7:61–66 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. A. Zhang, M. J. Groves, and M. E. Klegerman. The surface charge of cells of Mycobacterium bovis BCG vaccine, TiceTm substrain. Microbios. 53:191–195 (1988).

    PubMed  CAS  Google Scholar 

  32. J. Chen and B. Koopman. Effect of fluorochromes on bacterial surface properties and interaction with granular media. Appl. Environ. Microbiol. 63:3941–3945 (1997).

    PubMed  CAS  Google Scholar 

  33. H. Häcker, C. Fürmann, H. Wagner, and G. Häcker. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria. J. Immunol. 169:3172–3179 (2002).

    PubMed  Google Scholar 

  34. M. Rojas, L. F. Barrera, G. Puzo, and L. F. Garcia. Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products. J. Immunol. 159:1352–1361 (1997).

    PubMed  CAS  Google Scholar 

  35. J. Lee, H. G. Remold, M. H. Ieong, and H. Kornfeld. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J. Immunol. 176:4267–4274 (2006).

    PubMed  CAS  Google Scholar 

  36. T. Kaisho and S. Akira. Toll-like receptor function and signaling. J. Allergy. Clin. Immunol. 117:979–987 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. E. Rhoades, F-. F. Hsu, J. B. Torrelles, J. Turk, D. Chatterjee, and D. G. Russel. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48:875–888 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. M. J. Lyons, T. Yoshimura, and D. N. McMurray. Mycobacterium bovis BCG vaccination augments interleukin-8 mRNA expression and protein production in guinea pig alveolar macrophages infected with Mycobacterium tuberculosis. Infect. Immun. 70:5471–5478 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. S. Saito and M. Nakano. Nitric oxide production by peritoneal macrophages of Mycobacterium bovis BCG-infected or non-infected mice: regulatory roles of T lymphocytes and cytokines. J. Leukoc. Biol. 59:908–915 (1996).

    PubMed  CAS  Google Scholar 

  40. J. A. Hamerman and A. Aderem. Functional transitions in macrophages during in vivo infection with Mycobacterium bovis Bacillus Calmette-Guérin. J. Immunol. 167:2227–2233 (2001).

    PubMed  CAS  Google Scholar 

  41. M. J. Fenton, M. W. Vermeulen, S. Kim, M. Burdick, R. M. Strieter, and H. Kornfeld. Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis. Infect. Immun. 65:5149–5156 (1997).

    PubMed  CAS  Google Scholar 

  42. K. D. Srivastava, W. N. Rom, J. Jagirdar, T. Yie, T. Gordon, and K. Tchou-Wong. Crucial role of interleukin-1β and nitric oxide synthase in silica-induced inflammation and apoptosis in mice. Am. J. Respir. Crit. Care Med. 165:527–533 (2002).

    PubMed  Google Scholar 

  43. T. Gotoh and M. Mori. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J. Cell Biol. 144:427–434 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. M. A. Chambers, B. G. Marshall, A. Wangoo, A. Bune, H. T. Cook, R. J. Shaw, and D. B. Young. Differential responses to challenge with live and dead Mycobacterium bovis Bacillus Calmette-Guérin. J. Immunol. 158:1742–1748 (1997).

    PubMed  CAS  Google Scholar 

  45. E. B. Lasunskaia, M. N. N. Campos, M. R. M. de Andrade, R. A. Damatta, T. L. Kipnis, M. Einicker-Lamas, and W. D. Da Silva. Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J. Leukoc. Biol. 80:1480–1490 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. R. Haworth, N. Platt, S. Keshav, D. Hughes, E. Darley, H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 186:1431–1439 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. T. Doi, K. Higashino, Y. Kurihara, Y. Wada, T. Miyazaki, H. Nakamura, S. Uesugi, T. Imanishi, Y. Kawabe, H. Itakura, Y. Yazaki, A. Matsumoto, and T. Kodama. Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J. Biol. Chem. 268:2126–2133 (1993).

    PubMed  CAS  Google Scholar 

  48. S. Józefowski, M. Arredouani, T. Sulahian, and L. Kobzik. Disparate regulation and function of the class A scavenger receptors SR-AI/II and MARCO. J. Immunol. 175:8032–8041 (2005).

    PubMed  Google Scholar 

  49. K. Makino, N. Yamamoto, K. Higuchi, N. Harada, H. Ohshima, and H. Terada. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf. B 27:33–39 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by the “High-Tech Research Center” Project for Private Universities with a matching fund subsidy from MEXT (Ministry for Education, Culture, Sports, Science, and Technology) of Japan, 2004–2008, and by a grant-in-aid for scientific research from MEXT (No. 15300170 to H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, K., Tomoda, K., Inagawa, H. et al. Stimulation of Phagocytic Activity of Alveolar Macrophages Toward Artificial Microspheres by Infection with Mycobacteria. Pharm Res 25, 1420–1430 (2008). https://doi.org/10.1007/s11095-007-9525-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9525-8

Key words

Navigation