Skip to main content
Log in

Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since the seminal work of Emmy Noether, it is well know that all conservations laws in physics, e.g., conservation of energy or conservation of momentum, are directly related to the invariance of the action under a family of transformations. However, the classical Noether’s theorem cannot yield information about constants of motion for non-conservative systems since it is not possible to formulate physically meaningful Lagrangians for this kind of systems in classical calculus of variation. On the other hand, in recent years the fractional calculus of variation within Lagrangians depending on fractional derivatives has emerged as an elegant alternative to study non-conservative systems. In the present work, we obtained a generalization of the Noether’s theorem for Lagrangians depending on mixed classical and Caputo derivatives that can be used to obtain constants of motion for dissipative systems. In addition, we also obtained Noether’s conditions for the fractional optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40(24), 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80(4), 1811–1816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56, 1087–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baskin, E., Iomin, A.: Electrostatics in fractal geometry: fractional calculus approach. Chaos Solitons Fractals 44, 335–341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, P.S.: Dissipative dynamical systems: I. Proc. Natl. Acad. Sci. 17, 311 (1931)

    Article  MATH  Google Scholar 

  8. Bourdin, L.: A class of fractional optimal control problems and fractional Pontryagin’s systems. Existence of a fractional Noether’s theorem preprint (2012). arXiv:1203.1422

  9. Bourdin, L., Cresson, J., Greff, I.: A discrete/continuous fractional Noether theorem. Commun. Nonlinear Sci. Numer. Simul. 18(4), 878–887 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calcagni, G.: Quantum field theory, gravity and cosmology in a fractal universe. J. High Energy Phys. (JHEP) 3, 120 (2010)

    Article  MATH  Google Scholar 

  11. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II) 1, 161–198 (1971)

    Article  Google Scholar 

  12. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48(3), 033504, 34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Djukić, D.S.: Noether’s theorem for optimum control systems. Int. J. Control 1(18), 667–672 (1973)

    Article  MATH  Google Scholar 

  14. El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrdinger equation. Nonlinear Dyn. 81, 939–948 (2015)

    Article  MathSciNet  Google Scholar 

  15. Frederico, G.S.F., Torres, D.F.M.: Conservation laws for invariant functionals containing compositions. Appl. Anal. 86(9), 1117–1126 (2007). arXiv:0704.0949

  16. Frederico, G.S.F., Torres, D.F.M.: Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times. Int. J. Ecol. Econ. Stat. 9(F07), 74–82 (2007). arXiv:0711.0645

    MathSciNet  Google Scholar 

  17. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007). arXiv:math/0701187

    Article  MathSciNet  MATH  Google Scholar 

  18. Frederico, G.S.F., Torres, D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3(9–12), 479–493 (2008). arXiv:0712.1844

    MathSciNet  MATH  Google Scholar 

  19. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008). arXiv:0711.0609

    Article  MathSciNet  MATH  Google Scholar 

  20. Frederico, G.S.F., Torres, D.F.M.: Fractional, Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover Books on Mathematics, Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  22. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1), 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Science Publishing, Singapore (2011)

    Book  MATH  Google Scholar 

  24. Herrmann, R.: Gauge invariance in fractional field theories. Phys. Lett. A 372, 5515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hilfer, R.: Applications of Fractional Calculus in Physics. World Science Publishing, River Edge (2000)

    Book  MATH  Google Scholar 

  26. Iomin, A.: Accelerator dynamics of a fractional kicked rotor. Phys. Rev. E 75, 037201 (2007)

    Article  Google Scholar 

  27. Jost, J., Li-Jost, X.: Calculus of Variations. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  28. Ketov, S.V., Prager, Y.S.: On the square root of the Dirac equation within extended supersymmetry. Acta Phys. Pol. B 21, 463 (1990)

    MathSciNet  Google Scholar 

  29. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  30. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2007)

    MATH  Google Scholar 

  31. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136 (1999)

    Article  Google Scholar 

  32. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  34. Lazo, M.J.: Gauge invariant fractional electromagnetic fields. Phys. Lett. A 375, 3541–3546 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lazo, M.J., Torres, D.F.M.: The DuBois Reymond fundamental lemma of the fractional calculus of variations and an Euler Lagrange equation involving only derivatives of Caputo. J. Optim. Theory Appl. 156, 56–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lazo, M.J., Krumreich, C.E.: The action principle for dissipative systems. J. Math. Phys. 55, 122902, 11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Logan, J.D.: Applied Mathematics. Wiley, New York (1987)

    MATH  Google Scholar 

  38. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  39. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  40. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  42. Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Dirac equation and its solution. J. Phys. A Math. Theor. 43, 055203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Naber, M.: Time fractional Schrdinger equation. J. Math. Phys. 45, 3339 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, 1507–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations in terms of a generalized fractional integral with applications to Physics. Abstr. Appl. Anal. p. 871912, 24 pp. (2012). arXiv:1203.1961

  46. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

  47. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  48. Pooseh, S., Almeida, R., Torres, D.F.M.: Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10(2), 363–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes (Translated from the Russian by K.N. Trirogoff; edited by L.W. Neustadt). Interscience Publishers. Wiley, New York (1962)

  50. Raspini, A.: Simple solutions of the fractional Dirac equation of order 2/3. Phys. Scr. 64, 20 (2001)

    Article  MATH  Google Scholar 

  51. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3, part B), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  52. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  53. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives (Translated from the 1987 Russian original). Gordon and Breach, Yverdon (1993)

  54. Tarasov, V.E.: Fractional Heisenberg equation. Phys. Lett. A 372, 2984 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tarasov, V.E.: Electromagnetic fields on fractals. Mod. Phys. Lett. A 21, 1587–1600 (2006)

    Article  MATH  Google Scholar 

  56. Tenreiro Machado, J., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tenreiro Machado, J.A., Galhano, A.M., Trujillo, J.J.: Science metrics on fractional calculus development since 1966. Fract. Calcu. Appl. Anal. 16(2), 479–500 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Torres, D.F.M.: On the Noether theorem for optimal control. Eur. J. Control 8(1), 56–63 (2002)

    Article  MATH  Google Scholar 

  59. Vacaru, S.I.: Fractional dynamics from Einstein gravity, general solutions, and black holes. Int. J. Theor. Phys. 51, 1338–1359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002)

    Google Scholar 

  61. Zhang, Yi, Zhai, Xiang-Hua: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, 469–480 (2015)

    Article  MathSciNet  Google Scholar 

  62. Závada, P.: Relativistic wave equations with fractional derivatives and pseudodifferential operators. J. Appl. Math. 2, 163–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CNPq and CAPES (Brazilian research funding agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lazo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederico, G.S.F., Lazo, M.J. Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems . Nonlinear Dyn 85, 839–851 (2016). https://doi.org/10.1007/s11071-016-2727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2727-z

Keywords

Mathematics Subject Classification

Navigation