Skip to main content
Log in

Probabilistic flood forecasting and decision-making: an innovative risk-based approach

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Flood forecasting is becoming increasingly important across the world. The exposure of people and property to flooding is increasing and society is demanding improved management of flood risk. At the same time, technological and data advances are enabling improvements in forecasting capabilities. One area where flood forecasting is seeing technical developments is in the use of probabilistic forecasts—these provide a range of possible forecast outcomes that indicate the probability or chance of a flood occurring. While probabilistic forecasts have some distinct benefits, they pose an additional decision-making challenge to those that use them: with a range of forecasts to pick from, which one is right? (or rather, which one(s) can enable me to make the correct decision?). This paper describes an innovative and transferable approach for aiding decision-making with probabilistic forecasts. The proposed risk-based decision-support framework has been tested in a range of flood risk environments: from coastal surge to fluvial catchments to urban storm water scales. The outputs have been designed to be practical and proportionate to the level of flood risk at any location and to be easy to apply in an operational flood forecasting and warning context. The benefits of employing a benefit-cost inspired decision-support framework are that flood forecasting decision-making can be undertaken objectively, with confidence and an understanding of uncertainty, and can save unnecessary effort on flood incident actions. The method described is flexible such that it can be used for a wide range of flood environments with multiple flood incident management actions. It uses a risk-based approach taking into account both the probability and the level of impact of a flood event. A key feature of the framework is that it is based on a full assessment of the flood-related risk, taking into account both the probability and the level of impact of a flood event. A recommendation for action may be triggered by either a higher probability of a lower impact flood or a low probability of a very severe flood. Hence, it is highly innovative as it is the first application of such a risk-based method for flood forecasting and warning purposes. A final benefit is that it is considered to be transferrable to other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://evidence.environment-agency.gov.uk/FCERM/en/Default/HomeAndLeisure/Floods/WhatWereDoing/IntoTheFuture/ScienceProgramme/ResearchAndDevelopment/FCRM.aspx.

References

  • Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE (2008) The MOGREPS short-range ensemble prediction system. Q J Royal Meteorol Soc 134:703–722

    Article  Google Scholar 

  • Buizza R (2008) The value of probabilistic prediction. Atmos Sci Lett 9:36–42

    Article  Google Scholar 

  • Cloke H, Pappenberger F (2009) Ensemble flood forecasting: a review. J Hydrol 375(3/4):613–626

    Article  Google Scholar 

  • Dale M, Davies P, Harrison T (2012) Review of recent advances in UK operational hydrometeorology. In: Proceedings of the Institution of Civil Engineers Water Management 165 February 2012 Issue WM2. pp 55–64. doi:10.1680/wama.2012.165.2.55

  • Davies A, Demeritt D (2000) Cost-benefit analysis and the politics of valuing the environment. Radic Stat 73:24–33. http://www.radstats.org.uk/no073/article3.htm

    Google Scholar 

  • Demeritt D, Nobert S (2011) Responding to early flood warning in the European Union. In: Meyer CO, De Franco C (eds) Forecasting, warning, and transnational risks: is prevention possible? Palgrave, London, pp 127–147

    Google Scholar 

  • Demeritt, D, Nobert S, Cloke H, Pappenberger F (2012) The European flood alert system (EFAS) and the communication, perception and use of ensemble predictions for operational flood risk management. Hydrol Process. doi:10.1002/hyp.9419

  • Dietrich J, Denhard M, Schumann AH (2009) Can ensemble forecasts improve the reliability of flood alerts? J Flood Risk Manag 2:232–242. doi:10.1111/j.1753-318X.2009.01039.x

    Article  Google Scholar 

  • Environment Agency (2010) Creating a better place 2010–2015 Flood and coastal risk management supporting strategy. Available at: http://www.environment-agency.gov.uk/static/documents/Utility/CS_Flood_sub-strat.pdf

  • Environment Agency (2012) Applying probabilistic flood forecasting in flood incident management, Technical Report, published on line (in press)

  • Flood Hazard Research Centre (FHRC) (2010) Middlesex University—The benefits of flood and coastal risk management: a handbook of assessment techniques-2010 (Multi-coloured Manual)

  • Golding B (2009) Review—long lead time flood warnings: reality or fantasy? Meteorol Appl 16(1):3–12

    Article  Google Scholar 

  • Halcrow (2008) Assessing the benefits of flood warning (UKCC10A & UKCC10B), project report for SNIFFER. Northern Ireland Forum for Environmental Research, Scotland

  • Halcrow (2011) Developing alerting criteria for surface water flooding NA096. HGL. Report produced for the Environment Agency of England and Wales, Exeter, UK

  • Krzystowicz R (2001) The case for probabilistic forecasting in hydrology. J Hydrol 249(1–4):2–9

    Article  Google Scholar 

  • Laeger S, Cross R, Sene K, Weerts A, Beven K, Leedal D, Moore RJ, Vaughan M, Harrison T, Whitlow C (2010) Probabilistic flood forecasting in England and Wales—can it give us what we crave? In: Proceedings of the British hydrological society international symposium, managing consequences of a changing global environment. Newcastle

  • Mittermaier MP (2007) Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q J Royal Meteorol Soc 133(627):1487–1500

    Article  Google Scholar 

  • Mylne KR (2002) Decision-making from probability forecasts based on forecast value. Meteorol Appl 9:307–316

    Article  Google Scholar 

  • Nobert S, Demeritt D, Cloke H (2010) Using ensemble predictions for operational flood forecasting: lessons from Sweden. J Flood Risk Manag 3:72–79

    Article  Google Scholar 

  • Pappenberger, F, Thielen, J, del Medico M (2011) The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European flood alert system. Hydrol Process 25(7). doi:10.1002/hyp.7772.2010

  • Ramos M-H, Mathevet T, Thielen J, Pappenberger F (2010) Communicating uncertainty in hydro-meteorological forecasts: mission impossible? Meteorol Appl 17(2):223–235

    Article  Google Scholar 

  • Roberts NM, Lean HW (2008) Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Weather Rev 136:78–97

    Article  Google Scholar 

  • Rothstein H, Downer J (2012) Renewing Defra: exploring the emergence of risk-based policymaking in UK central government. Public Administration, Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. doi:10.1111/j.1467-9299.2011.01999.x

  • Price D, Hudson K, Boyce G, Schellekens, J, Moore RJ, Clark P, Harrison T, Connolly E, Pilling C (2012) Operational use of a grid-based model for flood forecasting. Proc Inst Civil Eng Water Manag 165(2):65–77. doi:10.1680/wama.2012.165.2.65

  • UNISDR (United Nations International Strategy for Disaster Reduction) (2012) Statement on zero draft of the outcome document of the UN conference on sustainable development (Rio+20) ‘The future we want’. Available at: http://www.unisdr.org/we/inform/publications/24941

  • Werner M, Van Dijk M and Schellekens J (2004) DELFT-FEWS: an open shell flood forecasting systemin. In: Liong S-Y, Phoon K, Babovic V (eds) 6th international conference on hydroinformatics. World Scientific Publishing Company, ISBN 981-238-787-0, pp 1205–1212

Download references

Acknowledgments

The authors gratefully acknowledge the Environment Agency of England and Wales for funding the research described in this paper (reference: SC0900032) as part of their Flood and Coastal Risk Management R&D Programme. We also acknowledge inputs to the research project from other members of the project team: Hannah Cloke of Kings College London, Keith Fenwick and Charlie Pilling of the Flood Forecasting Centre and Matthew Horritt, Andy Barnes, Yong Wang and Yiming Ji of Halcrow Group Ltd. Project output reviews were undertaken by David Demeritt of Kings College London and Micha Werner of Deltares. Comments from the anonymous reviewers helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Wicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, M., Wicks, J., Mylne, K. et al. Probabilistic flood forecasting and decision-making: an innovative risk-based approach. Nat Hazards 70, 159–172 (2014). https://doi.org/10.1007/s11069-012-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0483-z

Keywords

Navigation