Skip to main content

Advertisement

Log in

Effect of Transient Cerebral Ischemia on the Expression of Receptor for Advanced Glycation End Products (RAGE) in the Gerbil Hippocampus Proper

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. In this study, we examined changes in RAGE immunoreactivity and its protein levels in the gerbil hippocampus (CA1-3 regions) after 5 min of transient global cerebral ischemia. The ischemic hippocampus was stained with cresyl violet, neuronal nuclei (a neuron-specific soluble nuclear antigen) antibody and Fluoro-Jade B (a marker for neuronal degeneration). 5 days after ischemia–reperfusion, delayed neuronal death occurred in the stratum pyramidale of the CA1 region. RAGE immunoreactivity was not detected in any regions of the CA1-3 regions of the sham-group; the immunoreactivity was markedly increased only in the CA1 region from 3 days after ischemia–reperfusion. On the other hand, RAGE immunoreactivity was newly expressed in astrocytes, not in microglia. Western blot analysis showed that RAGE protein level was highest at 5 days post-ischemia. In brief, both the RAGE immunoreactivity and protein level were distinctively increased in astrocytes in the ischemic CA1 region from 3 days after transient cerebral ischemia. These results indicate that the increase of RAGE expression in astrocytes after ischemia–reperfusion may be related to the ischemia-caused activation of astrocytes in the ischemic CA1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meairs S, Wahlgren N, Dirnagl U et al (2006) Stroke research priorities for the next decade: a representative view of the European scientific community. Cerebrovasc Dis 22:75–82

    Article  PubMed  Google Scholar 

  2. Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics-2007 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 115:e69–171

    Article  PubMed  Google Scholar 

  3. Yu DK, Yoo KY, Shin BN et al (2012) Neuronal damage in hippocampal subregions induced by various durations of transient cerebral ischemia in gerbils using fluoro-jade B histofluorescence. Brain Res 1437:50–57

    Article  CAS  PubMed  Google Scholar 

  4. Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 85:79–87

    Article  CAS  PubMed  Google Scholar 

  5. Petito CK, Feldmann E, Pulsinelli WA et al (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

    Article  CAS  PubMed  Google Scholar 

  6. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

    Article  CAS  PubMed  Google Scholar 

  7. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  8. Yan BC, Park JH, Lee CH et al (2011) Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia. Brain Res 1425:142–154

    Article  CAS  PubMed  Google Scholar 

  9. Hwang IK, Yoo KY, Suh HW et al (2008) Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia. J Neurosci Res 86:2003–2015

    Article  CAS  PubMed  Google Scholar 

  10. Lee CH, Park JH, Yoo KY et al (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp Neurol 229:450–459

    Article  CAS  PubMed  Google Scholar 

  11. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83:876–886

    Article  CAS  Google Scholar 

  12. Yan SD, Chen X, Fu J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  13. Fang F, Lue LF, Yan S et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24:1043–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hassid BG, Nair MN, Ducruet AF et al (2009) Neuronal RAGE expression modulates severity of injury following transient focal cerebral ischemia. J Clin Neurosci 16:302–306

    Article  CAS  PubMed  Google Scholar 

  15. Kamide T, Kitao Y, Takeichi T et al (2012) RAGE mediates vascular injury and inflammation after global cerebral ischemia. Neurochem Int 60:220–228

    Article  CAS  PubMed  Google Scholar 

  16. Ma L, Carter RJ, Morton AJ et al (2003) RAGE is expressed in pyramidal cells of the hippocampus following moderate hypoxic-ischemic brain injury in rats. Brain Res 966:167–174

    Article  CAS  PubMed  Google Scholar 

  17. Muhammad S, Barakat W, Stoyanov S et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann MA, Drury S, Fu C et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  19. Neeper M, Schmidt AM, Brett J et al (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004

    CAS  PubMed  Google Scholar 

  20. Kim JB, Sig Choi J, Yu YM et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421

    Article  CAS  PubMed  Google Scholar 

  21. Zimmerman GA, Meistrell M 3rd, Bloom O et al (1995) Neurotoxicity of advanced glycation endproducts during focal stroke and neuroprotective effects of aminoguanidine. Proc Natl Acad Sci USA 92:3744–3748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Donato R (2007) RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med 7:711–724

    Article  CAS  PubMed  Google Scholar 

  23. Hu Z, Zeng L, Xie L et al (2007) Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 32:1927–1931

    Article  CAS  PubMed  Google Scholar 

  24. Beresewicz M, Kowalczyk JE, Zablocka B (2008) Kalirin-7, a protein enriched in postsynaptic density, is involved in ischemic signal transduction. Neurochem Res 33:1789–1794

    Article  CAS  PubMed  Google Scholar 

  25. Fang KM, Cheng FC, Huang YL et al (2013) Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biol Trace Elem Res 152:66–74

    Article  CAS  PubMed  Google Scholar 

  26. Ahn HC, Yoo KY, Hwang IK et al (2009) Ischemia-related changes in naive and mutant forms of ubiquitin and neuroprotective effects of ubiquitin in the hippocampus following experimental transient ischemic damage. Exp Neurol 220:120–132

    Article  CAS  PubMed  Google Scholar 

  27. Lee CH, Moon SM, Yoo KY et al (2010) Long-term changes in neuronal degeneration and microglial activation in the hippocampal CA1 region after experimental transient cerebral ischemic damage. Brain Res 1342:138–149

    Article  CAS  PubMed  Google Scholar 

  28. Candelario-Jalil E, Alvarez D, Merino N et al (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  CAS  PubMed  Google Scholar 

  29. Schmued LC, Hopkins KJ (2000) Fluoro-jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  30. Loskota WJ, Lomax LP, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil brain (Meriones unguiculatus). In: Peter Lomax M, Verity Anthony (eds) William James Loskota. Ann Arbor Science, Michigan

    Google Scholar 

  31. Lee CH, Park JH, Choi JH et al (2011) Heat shock protein 90 and its cochaperone, p23, are markedly increased in the aged gerbil hippocampus. Exp Gerontol 46:768–772

    Article  CAS  PubMed  Google Scholar 

  32. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ramasamy R, Yan SF, Schmidt AM (2012) Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids 42:1151–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Koistinaho M, Koistinaho J (2005) Interactions between Alzheimer’s disease and cerebral ischemia–focus on inflammation. Brain Res Brain Res Rev 48:240–250

    Article  CAS  PubMed  Google Scholar 

  35. Kogel D, Peters M, Konig HG et al (2004) S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience 127:913–920

    Article  CAS  PubMed  Google Scholar 

  36. Degryse B, Bonaldi T, Scaffidi P et al (2001) The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 152:1197–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Bukulin M, Kojro E et al (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516

    Article  CAS  PubMed  Google Scholar 

  39. Pichiule P, Chavez JC, Schmidt AM et al (2007) Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem 282:36330–36340

    Article  CAS  PubMed  Google Scholar 

  40. Vincent AM, Perrone L, Sullivan KA et al (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148:548–558

    Article  CAS  PubMed  Google Scholar 

  41. Greco R, Amantea D, Mangione AS et al (2012) Modulation of RAGE isoforms expression in the brain and plasma of rats exposed to transient focal cerebral ischemia. Neurochem Res 37:1508–1516

    Article  CAS  PubMed  Google Scholar 

  42. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  CAS  PubMed  Google Scholar 

  44. Yu AC, Lau LT (2000) Expression of interleukin-1 alpha, tumor necrosis factor alpha and interleukin-6 genes in astrocytes under ischemic injury. Neurochem Int 36:369–377

    Article  CAS  PubMed  Google Scholar 

  45. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  46. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  CAS  PubMed  Google Scholar 

  47. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298

    Article  PubMed  Google Scholar 

  48. Takano T, Oberheim N, Cotrina ML et al (2009) Astrocytes and ischemic injury. Stroke 40:S8–12

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee for his technical help in this study. This work was supported by a grant from the Gangwon Cardiovascular Health Research Institute, and by a Priority Research Centers Program grant (NRF-2009-0093812) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning.

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Young Choi or Moo-Ho Won.

Additional information

Jae-Chul Lee and Jun Hwi Cho have equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JC., Cho, J.H., Cho, GS. et al. Effect of Transient Cerebral Ischemia on the Expression of Receptor for Advanced Glycation End Products (RAGE) in the Gerbil Hippocampus Proper. Neurochem Res 39, 1553–1563 (2014). https://doi.org/10.1007/s11064-014-1345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1345-8

Keywords

Navigation