Skip to main content
Log in

Features of the expression of the c-Fos gene along the rostrocaudal axis of the hippocampus in common voles after rapid training to solve a spatial task

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2006

Abstract

The level of expression of the c-Fos protein in neurons was used as a measure of the activation of transcription in the hippocampus of common voles (Microtus arvalis Pall.) after rapid spatial training. Stained Fos-positive cells were counted on 20 brain sections along the rostrocaudal axis of the hippocampus. Voles were trained to find the exit to their home cages through one of the arms of a modified eight-arm radial maze (using a 2-h series of six trials on one day). Animals were initially trained to leave the home cage via an arm not connected to the maze. Voles of the “active” control group were passed through the isolated arm into the home cage six times on the experimental day. Animals for the “passive” control for c-Fos levels were collected from their home cages. Significant increases in c-Fos expression in voles trained in the maze and the active control group, as compared with passive controls, were seen in all areas studied (hippocampal fields CA1 and CA3 and the dentate fascia). At the same time, a significant increase in the number of c-Fos-positive neurons in voles trained in the maze, as compared with the active controls, was noted only in the caudal hippocampus, no differences being seen in the rostral part. The greatest levels of activation were seen in the dentate fascia and field CA3. These results provide evidence for the heterogeneous functioning of the hippocampus along the rostrocaudal axis during training of voles to solve a spatial task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Anokhin, “Molecular genetic bases of the systemogenesis of behavioral acts,” in: Systemogenesis Theory [in Russian], K. V. Sudakov (ed.), Gorizdat, Moscow (1997), pp. 215–276.

    Google Scholar 

  2. O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  3. N. R. Grigor’ev, The Functional Organization of Seeking Activity [in Russian], Author’s abstract of thesis for doctorate in medical sciences, Amur State Medical Academy (1998).

  4. K. A. Nikol’skaya and N. M. Khonicheva, “Characteristics of learning in rats in conditions of free selection,” Zh. Vyssh. Nerv. Deyat., 49, No. 3, 436–445 (1999).

    Google Scholar 

  5. A. A. Ungiadze, “Behavioral and electrophysiological effects of electrical stimulation of the hippocampus,” Fiziol. Zh. SSSR, 56, No. 11, 1531–1538 (1970).

    CAS  PubMed  Google Scholar 

  6. G. M. Chaichenko, “The functional role of the dorsal and ventral hippocampus in defensive behavior in rats,” Zh. Vyssh. Nerv. Deyat., 34, 1109–1115 (1984).

    CAS  Google Scholar 

  7. M. Ammassari-Teule, H. J. Hoffmann, and C. Rossi-Arnaud, “Learning in inbred mice: strain-specific abilities across three radial maze problems,” Behav. Genet., 23, 405–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. D. M. Bannerman, B. K. Yee, M. A. Good, M. J. Heupel, S. D. Iversen, and J. N. Rawlins, “Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions,” Behav. Neurosci., 113, 1170–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. C. A. Barnes, L. Nadel, and W. K. Honig, “Spatial memory deficit in senescent rats,” Can. J. Psychol., 34, No. 1, 3429–3439 (1980).

    Google Scholar 

  10. L. De Hoz, J. Knox, and R. G. M. Morris, “Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol,” Hippocampus, 13, 587–603 (2003).

    Article  PubMed  Google Scholar 

  11. K. Franklin and G. Paxinos, The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego (1997).

    Google Scholar 

  12. L. A. Galea, K. P. Ossenkopp, and M. Kavaliers, “Developmental changes in spatial learning in the Morris water-maze in young meadow voles, Microtus pennsylvanicus,” Behav. Brain Res., 60, 43–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. M. A. Good, “Spatial memory and hippocampal function: Where are we now?” Psicologica, 23, 109–132 (2003).

    Google Scholar 

  14. J. He, K. Yamada, A. Nakajima, and T. Nabeshima, “Learning and memory in two different reward tasks in a radial arm maze in rats,” Behav. Brain Res., 134, 139–148 (2002).

    Article  PubMed  Google Scholar 

  15. J. He, K. Yamada, and T. Nabeshima, “A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats,” Neuropsychopharmacology, 26, 259–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. B. J. J. Hock and M. D. Bunsey, “Differential effects of dorsal and ventral hippocampal lesions,” J. Neurosci., 18, 7027–7032 (1998).

    CAS  PubMed  Google Scholar 

  17. M. W. Jung, S. I. Wiener, and B. L. McNaughton, “Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat,” J. Neurosci., 14, 7347–7356 (1994).

    CAS  PubMed  Google Scholar 

  18. L. F. Katz, G. F. Ball, and R. J. Nelson, “Elevated Fos-like immunoreactivity in the brains of postpartum female prairie voles, Microtus ochrogaster,” Cell Tiss. Res., 298, 425–435 (1999).

    CAS  Google Scholar 

  19. M. Kavaliers and L. A. Galea, “Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus,” Behav. Brain Res., 61, 97–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Masuda, J. Odashima, S. Murai, H. Saito, M. Itoh, and T. Itoh, “Radial arm maze behavior in mice when a return to the home cage serves as the reinforcer,” Physiol. Behav., 56, No. 4, 785–788 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe, “Place navigation impaired in rats with hippocampal lesions,” Nature, 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. E. Moser, M. B. Moser, and P. Anderson, “Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions,” J. Neurosci., 13, 3916–3925 (1993).

    CAS  PubMed  Google Scholar 

  23. D. S. Olton, J. A. Walker, and F. H. Gage, “Hippocampal connections and spatial discrimination,” Brain Res., 139, 295–308 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. E. Passino, S. Middei, L. Restivo, V. Bertaina-Anglade, and M. Ammassari-Teule, “Genetic approach to variability of memory systems: analysis of place vs. response learning and fos-related expression in hippocampal and striatal areas of C57BL/6 and DBA/2 mice,” Hippocampus, 12, No. 1, 63–75 (2002).

    Article  PubMed  Google Scholar 

  25. M. G. Pleskacheva, D. P. Wolfer, I. F. Kupriyanova, D. L. Nikolenko, H. Scheffrahn, G. Dell’Omo, and H.-P. Lipp, “Hippocampal mossy fibers and swimming navigation learning in two vole species occupying different habitats,” Hippocampus, 10, 17–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. D. K. Sawrey, J. R. Keith, and R. C. Backes, “Place learning by three vole species (Microtus ochrogaster, M. montanus, and M. pennsylvanicus) in the Morris swim task,” J. Comp. Psychological., 108, 179–188 (1994).

    Article  CAS  Google Scholar 

  27. H. Schwegler, W. E. Crusio, and I. Brust, “Hippocampal mossy fibers and radial-maze learning in the mouse: a correlation with spatial working memory but not with non-spatial reference memory,” Neurosci., 34, 293–298 (1990).

    Article  CAS  Google Scholar 

  28. G. C. Teskey, K. P. Ossenkopp, M. Kavaliers, N. K. Innis, and F. H. Boon, “Individual differences in radial maze performance and locomotor activity in the meadow vole, Microtus pennsylvanicus,” Physiol. Behav., 65, 555–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. S. D. Vann, M. W. Brown, J. The. Erichsen, and J. P. Aggleton, “Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests,” J. Neurosci., 20, 2711–2718 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 55, No. 2, 231–240, March–April, 2005.

An erratum to this article is available at http://dx.doi.org/10.1007/s11055-006-0058-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuptsov, P.A., Pleskacheva, M.G., Voronkov, D.N. et al. Features of the expression of the c-Fos gene along the rostrocaudal axis of the hippocampus in common voles after rapid training to solve a spatial task. Neurosci Behav Physiol 36, 341–350 (2006). https://doi.org/10.1007/s11055-006-0023-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0023-y

Key words

Navigation