Skip to main content
Log in

Study of Martensite Ageing with Plasma Ion Nitriding of Steel C300 Using Design of an Experiment

  • Published:
Metal Science and Heat Treatment Aims and scope

Double treatment of maraging steel C300 (nitriding + ageing) is studied using experimental design with a full 32 factorial matrix. After this treatment maximum surface hardness is 1270 HV and for the core it is 553 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Rohrbach and M. Schmidt, Metals Handbook, Vol. 1, ASM International, Materials Park, OH, USA (1990)

    Google Scholar 

  2. R. Tewari, S. Mazumder, and I. S. Batra, “Precipitation in 18 wt.% Ni maraging steel of grade 350,” Acta Mater., 48(5), 1187 – 1200 (2000).

    Article  Google Scholar 

  3. C. Wu, A. K. Sinha, and G. Liu, Steel Heat Treatment Metallurgy and Technologies, CRC Press, Boca Raton, USA (2007).

    Google Scholar 

  4. M. Esfandiari and H. Dong, “Improving the surface properties of A286 precipitation-hardening stainless steel by low-temperature plasma nitriding,” Surf. Coat. Technol., 201(14), 6189 –6196 (2007).

    Article  Google Scholar 

  5. S. H. Khan, A. N. Khan, F. Ali, et al., “Study of precipitation behavior at moderate temperatures in 350 maraging steel by eddy current method,” J. Alloys Compounds, 474, 254 – 256 (2009).

    Article  Google Scholar 

  6. Y. Lee, M. Kung, I. Lee, and C. Chou, “Effect of lath microstructure on the mechanical properties of flow-formed C-250 maraging steels,” Mater. Sci. Eng. A, 454, 602 – 607 (2007).

    Article  Google Scholar 

  7. E. V. Pereloma, A. Shekhter, M. K. Miller, and S. P. Ringer, “Ageing behaviour of an Fe – 20Ni – 1.8Mn – 1.6Ti – 0.59Al (wt.%) maraging alloy: clustering, precipitation and hardening,” Acta Mater., 52(19), 5589 – 5602 (2004).

    Article  Google Scholar 

  8. K. Rajkumar, S. Vaidyanathan, A. Kumar, et al., “Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters,” J. Magnetism Magnetic Mater., 312(2), 359 – 365 (2007).

    Article  Google Scholar 

  9. R. Schnitzer, M. Schober, S. Zinner, and H. Leitner, “Effect of Cu on the evolution of precipitation in an Fe – Cr – Ni – Al – Ti maraging steel,” Acta Mater., 58(10), 3733 – 3741 (2010).

    Article  Google Scholar 

  10. J. Zhu, R. Zhao, C. Jiang and Z. Lai, “Effect of aging temperature on modulated structures of 00Ni12Cr5Mo3TiAlV maraging steel,” Mater. Sci. Eng. A, 516(1 – 2), 201 – 204 (2009).

    Article  Google Scholar 

  11. V. K. Vasudevan, S. J. Kim, and C. M. Wayman, “Precipitation reactions and strengthening behavior in 18 wt.% nickel maraging steels,” Metall. Mater. Trans. A, 21(10), 2655 – 2668 (1990).

    Article  Google Scholar 

  12. U. K. Viswanathan, R. Kishore, and M. K. Asundi, “Effect of thermal cycling on the mechanical properties of 350-grade maraging steel,” Metall. Mater. Trans. A, 27(3), 757 – 761 (1996).

    Article  Google Scholar 

  13. U. Viswanathan, G. Dey, and V. Sethumadhavan, “Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel,” Mater. Sci. Eng. A., 398(1 – 2), 367 – 372 (2005).

    Article  Google Scholar 

  14. Y. He, K. Yang, K. Liu, et al., “Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel,” Metall. Mater. Trans. A, 37(4), 1107 – 1116 (2006).

    Article  Google Scholar 

  15. Y. He, K. Yang, and W. Sha, “Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel,” Metall. Mater. Trans. A, 36(9), 2273 – 2287 (2005).

    Article  Google Scholar 

  16. Y. He, K. Yang, W. Sha, and D. Cleland, “Microstructure and mechanical properties of a 2000 MPa Co-free maraging steel after aging at 753 K,” Metall. Mater. Trans. A, 35, 2747 – 2755 (2004).

    Article  Google Scholar 

  17. D. P. Borisov, V. V. Goncharova, V. M. Kuzmichenko, et al., “Plasma-ion nitriding of alloy steel with the use of a low pressure arc plasma generator,” Met. Sci. Heat Treatment, 48, 539 – 542 (2006).

    Article  Google Scholar 

  18. S. Hong and K. Kim, “Surface hardening of steels by ion-nitriding with aluminum subsidiary cathode,” Surf. Coat. Technol., 122, 260 – 267 (1999).

    Article  Google Scholar 

  19. K. Ozbaysal, O. T. Inal, and A. D. Romig, “Ion nitriding behavior of several tool steels,” Mater. Sci. Eng., 78(2), 179 – 186 (1986).

    Article  Google Scholar 

  20. O. T. Inal, K. Ozbaysal, E. S. Metin, and N. Y. Pehlivantürk, “A review of plasma surface modification: process, parameters and microstructural characterization,” in: T. Spalvins and W. L. Kowacs (eds.), Ion Nitriding and Ion Carburizing, ASM International, Cincinnati, OH, USA (1989).

    Google Scholar 

  21. B. J. Lightfoot and D. J. Jack, Source Book of Nitriding, ASM International, Cincinnati, OH, USA (1977).

    Google Scholar 

  22. K. Genel and M. A. Demirkol, “A method to predict effective case depth in ion nitrided steels,” Surf. Coat. Technol., 195, 116 – 120 (2005).

    Article  Google Scholar 

  23. S. Parascandola, O. Kruse, E. Richter, and W. Moeller, “Nitriding stainless steels at moderate temperature: Time- and depth-resolved characterization of the near surface composition during the nitriding process,” J. Vacuum Sci. Technol. B: Microelectronics Nanometer Struct., 17(2), 855 – 858 (1999).

    Article  Google Scholar 

  24. J. Ratajski and T. Suszko, “Modelling of the nitriding process,” J. Mater. Proc. Technol., 195(1 – 3), 212 – 217 (2008).

    Article  Google Scholar 

  25. M. R. Cruz and M. H. Staia, “Ion nitrided AISI H13 tool steel. Part 2, High temperature performance under sliding wear conditions,” Surf. Eng., 22(5), 367 – 374 (2006).

    Article  Google Scholar 

  26. I. E. Meletis and S. Yan, “Low-pressure ion nitriding of AISI 304 austenitic stainless steel with an intensified glow discharge,” J. Vacuum Sci. Technol. A, 11(1), 25 – 33 (1993).

    Article  Google Scholar 

  27. R. Wei, R. C. Benn, and C. V. Cooper, “High Intensity plasma ion nitriding of AerMet 100 martensitic steel,” Plasma Proc. Polymers, 4(S1), 700 – 706 (2007).

    Article  Google Scholar 

  28. D. G. Montgomery, Design and Analysis of Experiments, Wiley, New York, USA (1997).

    Google Scholar 

  29. Z. Cvijović, G. Radenković, V. Maksimović, and B. Dimčić, “Application of ANOVA method to precipitation behaviour studies,” Mater. Sci. Eng. A., 397(1 – 2), 195 – 203 (2005).

    Article  Google Scholar 

  30. A. Hassan, O. Bataineh, and K. Abed, “The effect of time and temperature on the precipitation behavior and hardness of Al – 4 wt.% Cu alloy using design of experiments,” J. Mater. Proc. Technol., 204(1 – 3), 343 – 349 (2008).

    Article  Google Scholar 

  31. G. Leisk and A. Saigai, “A statistical approach to the heat treatment optimization of Al – Al2O3 particulate composites,” J. Mater. Eng. Perform., 1, 45 – 51 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Gezicioglu.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 45 – 48, June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezicioglu, Y., Inal, O.T. Study of Martensite Ageing with Plasma Ion Nitriding of Steel C300 Using Design of an Experiment. Met Sci Heat Treat 56, 326–329 (2014). https://doi.org/10.1007/s11041-014-9755-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-014-9755-4

Key words

Navigation