Skip to main content

Advertisement

Log in

Estimation of the macroscopic stress-strain curve of a particulate composite with a crosslinked polymer matrix

  • Published:
Mechanics of Composite Materials Aims and scope

The main focus of the present paper is the estimation of the macroscopic stress–strain behavior of a particulate composite. A composite with a cross-linked polymer matrix in a rubbery state filled with an alumina-based mineral filler is investigated by means of the finite-element method. The hyperelastic material behavior of the matrix is described by the Mooney–Rivlin material model. Numerical models on the basis of unit cells are developed. The existence of a discontinuity (breaking) in the matrix at higher loading levels is taken into account to obtain a more accurate estimate for the stress–strain behavior of the particulate composite investigated. The numerical results obtained are compared with an experimental stress–strain curve, and a good agreement is found to exist. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. J. Sun, W. Wu, S. Mahanti, K. Sadeghipour, G. Baran, and S. Debnath, “Finite element analysis of toughtening for a particle-reinforced composite,” Polym. Composite, 27, No. 4, 360–367 (2006).

    Article  Google Scholar 

  2. C. J. Sun, P. Saffari, R. Ranade, K. Sadeghipour, and G. Baran, “Finite element analysis of elastic property bounds of a composite with randomly distributed particles,” Compos. Pt. A-Appl. Sci. Manuf., 38, 80–86 (2007).

    Article  CAS  Google Scholar 

  3. B. Banerjee, D. O. Adams, “Micromechanics-based determination of effective elastic properties of polymer bonded explosives,” Physica B, 338, 8–15 (2003).

    Article  CAS  Google Scholar 

  4. M. Böl, S. Reese, “Finite element modeling of rubber-like materials – a comparison between simulation and experiment,” J. Mater. Sci., 40, 5933–5939 (2005).

    Article  Google Scholar 

  5. T. Iung and M. Grange, Letter “Mechanical behaviour of two-phase materials investigated by the finite element method: necessity for three-dimensional modeling,” Mater. Sci. Engng., A201, L8–L11 (1995).

    Article  Google Scholar 

  6. H. P. Gänser, F. D. Fischer, and E. A. Werner, “Large-strain behavior of two-phase materials with random inclusions,” Comp. Mater. Sci., 11, 221–226 (1998).

    Article  Google Scholar 

  7. N. Chawla, R. S. Sidhu, and V. V. Ganesh, “Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites,” Acta Mater., 54, 1541–1548 (2006).

    Article  CAS  Google Scholar 

  8. P. R. Marur, “Estimation of effective elastic properties and interface stress concentrations in particulate composites by unit cell methods,” Acta Mater., 52, 1263–1270 (2004).

    Article  CAS  Google Scholar 

  9. W. Han, A. Eckschlager, and H. J. Böhm, “The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs,” Compos. Sci. Technol., 61, 1581–1590 (2001).

    Article  CAS  Google Scholar 

  10. H. Shen and C. J. Lissenden, “3D finite element analysis of particle-reinforced aluminum,” Mater. Sci. Engng. A338, 271–281 (2002).

    Article  CAS  Google Scholar 

  11. J. LLorca and J. Segurado, “Three-dimensional multiparticle cell simulations of deformation and damage in spherereinforced composites,” Mater. Sci. Eng. A365, 267–274 (2004).

    CAS  Google Scholar 

  12. K. Matouš, H. M. Inglis, X. Gu, D. Rypl, T. L. Jackson, and P. H. Geubelle, “Multiscale modeling of solid propellants: From particle packing to failure,” Compos. Sci. Technol., 67, 1694–1708 (2007).

    Article  Google Scholar 

  13. C. J. Sun, P. Saffari, K. Sadeghipour, and G. Baran, “Effects of particle arrangement on stress concentrations in composites,” Mater. Sci. Eng. A 405, 287–295 (2005).

    Article  Google Scholar 

  14. C. R. Chen, S. Y. Qin, S. X. Li, and J. L. Wen, “Finite element analysis of the effects of particle morphology on the mechanical response of composites,” Mater. Sci. Engng. A278, 96–105 (2000).

    Article  CAS  Google Scholar 

  15. X. Wang, K. Xiao, L. Ye, Y. W. Mai, C. H. Wang, and L. R. F. Rose, “Modelling the mechanical properties of core-shell rubber-modified epoxies,” Acta Mater., 48, 579–586 (2000).

    Article  CAS  Google Scholar 

  16. X. Zeng, H. Fan, and J. Zhang, “Prediction of the effects of particle and matrix morphologies on Al2O3 particle/polymer composites by the finite element method,” Comp. Mater. Sci., 40, 395–399 (2007).

    Article  CAS  Google Scholar 

  17. J. Cho, M. S. Joshi, and C. T. Sun, “Effect of inclusion size on the mechanical properties of polymeric composites with micro- and nanoparticles,” Compos. Sci. Technol., 66, 1941–1952 (2006).

    Article  CAS  Google Scholar 

  18. P. Hutař, Z, Majer, L. Náhlík, L. Šestáková, and Z. Knésl, “Influence of particle size on the fracture toughness of a PP-based particulate composite,” Mech. Compos. Mater., 45, No. 3, 281–286 (2009).

    Article  Google Scholar 

  19. P. Hutař, L. Náhlík, Z. Majer, and Z. Knésl, “The effect of an interphase on micro-crack behaviour in polymer composites,” Computational Modelling and Advanced Simulations, Vol. 24, Eds. Murín, J., Kompiš, V., Kutiš, V., Springer Science + Bussines Media, 83–97 (2011).

  20. J. Segurado, C. Gonzáles, and J. LLorca, “A numerical investigation of the effect of particle clustering on the mechanical properties of composites,” Acta Mater., 51, 2355–2369 (2003).

    Article  CAS  Google Scholar 

  21. L. R. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, Oxford, third edition (2005).

    Google Scholar 

  22. T. Kawamura, K. Urayama, and S. Kohjiya, “Multiaxial deformations of end-linked poly(dimethylsiloxane) networks 5. Revisit to Mooney–Rivlin approach to strain energy density function,” J. Soc. Rheology, Japan, 31, No. 4, 213–217 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported through the Grant No.106/08/1409 of the Czech Science Foundation and through the Specific academic research grant of the Ministry of Education, Youth, and Sports of the Czech Republic No. FAST-FCH-FSI-S-11-1 provided to Brno University of Technology, Faculty of Mechanical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Náhlík.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 47, No. 6, pp. 893-902, November-December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Náhlík, L., Hutař, P., Dušková, M. et al. Estimation of the macroscopic stress-strain curve of a particulate composite with a crosslinked polymer matrix. Mech Compos Mater 47, 627–634 (2012). https://doi.org/10.1007/s11029-011-9242-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9242-6

Keywords

Navigation