Skip to main content

Advertisement

Log in

Forward subtractive libraries containing genes transactivated by dexamethasone in ataxia-telangiectasia lymphoblastoid cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder caused by biallelic mutations in the Ataxia Telangiectasia-mutated gene. A-T shows a complex phenotype ranging from early-onset progressive neurodegeneration to immunodeficiencies, high incidence of infections, and tumors. Unfortunately, no therapy is up to now available for treating this condition. Recently, the short term treatment of ataxia-telangiectasia patients with glucocorticoids was shown to improve their neurological symptoms and possibly reverse cerebellar atrophy. Thus, corticosteroids represent an attractive approach for the treatment of this neurodegenerative disease. However, the molecular mechanism involved in glucocorticoid action in A-T is yet unknown. The aim of our work is to construct cDNA libraries containing those genes which are transactivated by the glucocorticoid analogue, dexamethasone, in A-T human cells. For this purpose, suppression subtractive hybridization has been performed on ATM-null lymphoblastoid cell transcriptome extracted following drug administration. Annotation of whole genes contained in the libraries has been obtained by coupling subtractive hybridization with microarray analysis. Positive transcripts have been validated by quantitative PCR. Through in silico analyses, identified genes have been classified on the basis of the pathway in which they are involved, being able to address signaling required for dexamethasone action. Most of the induced transcripts are involved in metabolic processes and regulation of cellular processes. Our results can help to unravel the mechanism of glucocorticoid action in the reversion of A-T phenotype. Moreover, the induction of a specific region of the ATM transcript has been identified as putative biomarker predictive of dexamethasone efficacy on ataxic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A-T:

Ataxia telangiectasia

GC:

Glucocorticoid

dexa:

Dexamethasone

SSH:

Suppression subtractive hybridization

GRE:

Glucocorticoid responsive elements

LCLs:

Lymphoblastoid cell lines

References

  1. Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  CAS  PubMed  Google Scholar 

  2. Abraham RT (2004) PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3:883–887

    Article  CAS  Google Scholar 

  3. Shiloh Y, Ziv Y (2012) The ATM protein: the importance of being active. J Cell Biol 198:273–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Biton S, Barzilai A, Shiloh Y (2008) The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 7:1028–1038

    Article  CAS  Google Scholar 

  5. Chun HH, Gatti RA (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3:1187–1196

    Article  CAS  Google Scholar 

  6. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  CAS  PubMed  Google Scholar 

  7. Gilad S, Chessa L, Khosravi R et al (1998) Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62:551–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Broccoletti T, Del GE, Amorosi S et al (2008) Steroid-induced improvement of neurological signs in ataxia-telangiectasia patients. Eur J Neurol 15:223–228

    Article  CAS  PubMed  Google Scholar 

  9. Broccoletti T, Del GE, Cirillo E et al (2011) Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. Eur J Neurol 18:564–570

    Article  CAS  PubMed  Google Scholar 

  10. Buoni S, Zannolli R, Sorrentino L et al (2006) Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol 63:1479–1482

    Article  PubMed  Google Scholar 

  11. Zannolli R, Sabrina B, Betti G et al (2012) A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 27:1312–1316

    Article  CAS  PubMed  Google Scholar 

  12. Gatti RA, Perlman S (2009) A proposed bailout for A-T patients? Eur J Neurol 16:653–655

    Article  PubMed Central  PubMed  Google Scholar 

  13. Biagiotti S, Paoletti MF, Fraternale A et al (2011) Drug delivery by red blood cells. IUBMB Life 63:621–631

    Article  CAS  PubMed  Google Scholar 

  14. Bossa F, Latiano A, Rossi L et al (2008) Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am J Gastroenterol 103:2509–2516

    Article  CAS  PubMed  Google Scholar 

  15. Castro M, Rossi L, Papadatou B et al (2007) Long-term treatment with autologous red blood cells loaded with dexamethasone 21-phosphate in pediatric patients affected by steroid-dependent Crohn disease. J Pediatr Gastroenterol Nutr 44:423–426

    Article  CAS  PubMed  Google Scholar 

  16. Pierige F, Serafini S, Rossi L et al (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60:286–295

    Article  CAS  PubMed  Google Scholar 

  17. Reeves EK, Rayavarapu S, Damsker JM et al (2012) Glucocorticoid analogues: potential therapeutic alternatives for treating inflammatory muscle diseases. Endocr Metab Immune Disord Drug Targets 12:95–103

    Article  CAS  PubMed  Google Scholar 

  18. Barzilai A, Biton S, Shiloh Y (2008) The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 7:1010–1027

    Article  CAS  Google Scholar 

  19. Barzilai A (2010) DNA damage, neuronal and glial cell death and neurodegeneration. Apoptosis 15:1371–1381

    Article  CAS  PubMed  Google Scholar 

  20. Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37:15–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Russo I, Cosentino C, Del GE et al (2009) In ataxia-telangiectasia betamethasone response is inversely correlated to cerebellar atrophy and directly to antioxidative capacity. Eur J Neurol 16:755–759

    Article  CAS  PubMed  Google Scholar 

  22. Giardino G, Fusco A, Romano R et al (2013) Betamethasone therapy in ataxia telangiectasia: unraveling the rationale of this serendipitous observation on the basis of the pathogenesis. Eur J Neurol 20:740–747

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Chen J, Ricupero CL et al (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18:783–790

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34:518–530

    Article  CAS  PubMed  Google Scholar 

  25. Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044

    Google Scholar 

  26. Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163:29–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids: new mechanisms for old drugs. N Engl J Med 353:1711–1723

    Article  CAS  PubMed  Google Scholar 

  28. Lit L, Sharp FR, Apperson M et al (2009) Corticosteroid effects on blood gene expression in Duchenne muscular dystrophy. Pharmacogenomics J 9:411–418

    Article  CAS  PubMed  Google Scholar 

  29. Diatchenko L, Lau YF, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Menotta M, Biagiotti S, Bianchi M et al (2012) Dexamethasone partially rescues ataxia telangiectasia-mutated (ATM) deficiency in ataxia telangiectasia by promoting a shortened protein variant retaining kinase activity. J Biol Chem 287:41352–41363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nishimura M, Koeda A, Suzuki E et al (2006) Effects of prototypical drug-metabolizing enzyme inducers on mRNA expression of housekeeping genes in primary cultures of human and rat hepatocytes. Biochem Biophys Res Commun 346:1033–1039

    Article  CAS  PubMed  Google Scholar 

  32. de Kok JB, Roelofs RW, Giesendorf BA et al (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85:154–159

    Article  PubMed  Google Scholar 

  33. Yakubov E, Dinerman P, Kuperstein F et al (2005) Improved representation of gene markers on microarray by PCR-Select subtracted cDNA targets. Brain Res Mol Brain Res 137:110–118

    Article  CAS  PubMed  Google Scholar 

  34. Harms C, Albrecht K, Harms U et al (2007) Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids. J Neurosci 27:4562–4571

    Article  CAS  PubMed  Google Scholar 

  35. Barr CS, Dokas LA (1999) Glucocorticoids regulate the synthesis of HSP27 in rat brain slices. Brain Res 847:9–17

    Article  CAS  PubMed  Google Scholar 

  36. Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2:re5

    PubMed  Google Scholar 

  37. Chessa L, Leuzzi V, Plebani A et al (2014) Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia telangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis 9:5

    Article  PubMed Central  PubMed  Google Scholar 

  38. Baschant U, Lane NE, Tuckermann J (2012) The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol 8:645–655

    Article  CAS  PubMed  Google Scholar 

  39. Datson NA, Morsink MC, Meijer OC et al (2008) Central corticosteroid actions: search for gene targets. Eur J Pharmacol 583:272–289

    Article  CAS  PubMed  Google Scholar 

  40. Morsink MC, Steenbergen PJ, Vos JB et al (2006) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 18:239–252

    Article  CAS  PubMed  Google Scholar 

  41. Datson NA, van der Perk J, de Kloet ER et al (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14:675–689

    Article  CAS  PubMed  Google Scholar 

  42. Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Costanzo V (2013) ATM dependent control of cellular metabolism. Ataxia Telangiectasia Worshop 2013, University of Birmingham, Birmingham, UK, 28th–31st July 2013

  44. Saad MJ, Folli F, Araki E et al (1994) Regulation of insulin receptor, insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-F442A adipocytes. Effects of differentiation, insulin, and dexamethasone. Mol Endocrinol 8:545–557

    CAS  PubMed  Google Scholar 

  45. Halaby MJ, Hibma JC, He J et al (2008) ATM protein kinase mediates full activation of Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cell Signal 20:1555–1563

    Article  CAS  PubMed  Google Scholar 

  46. Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2:re5

    PubMed  Google Scholar 

  47. Ambrose M, Gatti RA (2013) Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121:4036–4045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ambrose M, Goldstine JV, Gatti RA (2007) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16:2154–2164

    Article  CAS  PubMed  Google Scholar 

  49. Stern N, Hochman A, Zemach N et al (2002) Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 277:602–608

    Article  CAS  PubMed  Google Scholar 

  50. Valentin-Vega YA, Maclean KH, Tait-Mulder J et al (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119:1490–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Valentin-Vega YA, Kastan MB (2012) A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy 8:840–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rachamim N, Latter H, Malinin N et al (1995) Dexamethasone enhances expression of mitochondrial oxidative phosphorylation genes in rat distal colon. Am J Physiol 269:C1305–C1310

    CAS  PubMed  Google Scholar 

  53. Van Itallie CM (1992) Dexamethasone treatment increases mitochondrial RNA synthesis in a rat hepatoma cell line. Endocrinology 130:567–576

    PubMed  Google Scholar 

  54. Weber K, Bruck P, Mikes Z et al (2002) Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 143:177–184

    Article  CAS  PubMed  Google Scholar 

  55. Morsink MC, Joels M, Sarabdjitsingh RA et al (2006) The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 99:1282–1298

    Article  CAS  PubMed  Google Scholar 

  56. Montecucco A, Biamonti G (2013) Pre-mRNA processing factors meet the DNA damage response. Front Genet 4:102

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by “Fondazione M. Vocale.” Sara Biagiotti hold a fellowship from Fondazione Cassa di Risparmio di Fano sponsorized by FANOATENEO and Associazione Nazionale A-T “Davide DeMarini.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Biagiotti or Michele Menotta.

Additional information

Sara Biagiotti and Michele Menotta contribute equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biagiotti, S., Menotta, M., Giacomini, E. et al. Forward subtractive libraries containing genes transactivated by dexamethasone in ataxia-telangiectasia lymphoblastoid cells. Mol Cell Biochem 392, 13–30 (2014). https://doi.org/10.1007/s11010-014-2013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2013-7

Keywords

Navigation