Skip to main content
Log in

Formation of Iron-Carbon Nanoparticles behind Shock Waves

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

An attempt was made to obtain iron-carbon nanoparticles by two-step pyrolysis of Fe(CO)5- and C3O2-containing mixtures behind incident and reflected shock waves in a shock tube. The formation of binary particles was monitored by recording the extinction of He-Ne laser radiation and laser-induced incandescence (LII). The LII method provides particle size estimates if the thermal and optical properties of the constituting material are known. Behind an incident shock wave, at temperatures of 700–1500 K, Fe(CO)5 decomposes within a short period of time (∼50 µs). The resulting iron atoms combine into particles, which serve as condensation nuclei for carbon vapor resulting from C3O2 pyrolysis at 1500–3000 K behind the reflected shock wave. The binary particles thus produced are considerably larger than pure carbon or iron particles. As the mixture temperature behind the reflected shock wave is raised, the diameter of these binary particles decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tanke, D., Wagner, H.Gg., and Zaslonko, I.S., Proc. Combust. Inst., 1998, vol. 27, p. 1597.

    Google Scholar 

  2. Starikovsky, A., Thienel, Th., Wagner, H.Gg., and Zaslonko, I.S., Ber. Bunsen-Ges. Phys. Chem., 1998, vol. 102, p. 1815.

    CAS  Google Scholar 

  3. Emelianov, A., Eremin, A., Jander, H., and Wagner, H.Gg., 29th Combustion Symp., Sapporo, Japan, 2002, p. 102.

  4. Melton, L.A., Appl. Opt., 1986, vol. 23, p. 2201.

    Google Scholar 

  5. Roth, P. and Filippov, A.V., J. Aerosol Sci., 1996, vol. 27, no.1, p. 95.

    Article  CAS  Google Scholar 

  6. Schramml, S., Dankers, S., Bader, K., et al., Combust. Flame, 2000, vol. 120, p. 439.

    Google Scholar 

  7. Van der Wall, R.L., Appl. Phys., 1998, vol. 67, p. 115.

    Google Scholar 

  8. Woiki, D., Giesen, A., and Roth, P., Proc. Combust. Inst., 2000, vol. 28, p. 2531.

    CAS  Google Scholar 

  9. Starke, R., Kock, B., and Roth, P., Shock Waves, 2003, vol. 12, p. 351.

    Google Scholar 

  10. Smirnov, V.N., Kinet. Katal., 1993, vol. 34, no.4, p. 591.

    CAS  Google Scholar 

  11. Vlasov, P.A., Zaslonko, I.S., and Karasevich, Yu.K., Teplofiz. Vys. Temp., 1998, vol. 36, no.2, p. 206.

    Google Scholar 

  12. Deppe, J., Emelianov, A., Eremin, A., and Wagner, H.Gg., Z. Phys. Chem., 2002, vol. 216, p. 641.

    CAS  Google Scholar 

  13. Akhmadov, U.S., Zaslonko, I.S., and Smirnov, V.N., Khim. Fiz., 1989, vol. 8, no.10, p. 1400.

    CAS  Google Scholar 

  14. Filippov, A.V., Markus, M.W., and Roth, P., J. Aerosol Sci., 1998, vol. 30, p. 71.

    Google Scholar 

  15. Williams, M.R. and Loyalka, S.K., Aerosol Science: Theory and Practice, Oxford: Pergamon, 1991, p. 305.

    Google Scholar 

  16. Eremin, A., Kock, B., Roth, P., et al., Int. Symp. on Combustion and Atmospheric Pollution, St. Petersburg, 2003, p. 256.

  17. CRC Handbook of Chemistry and Physics, 2001, vol. 81.

  18. Chase, M.W., Davies, C.A., Downey, J.R., et al., J. Phys. Chem. Ref. Data, 1985, vol. 14, no.1.

  19. Graham, S.C., Homer, J.B., and Rosenfeld, J.L.J., Proc. R. Soc. London, 1975.

  20. Dorge, J., Tanke, D., and Wagner, H.Gg., Z. Phys. Chem., 1999, vol. 212, p. 219.

    CAS  Google Scholar 

  21. Emelianov, A., Eremin, A., Jander, H., and Wagner, H.Gg., Z. Phys. Chem., 2003, vol. 217, p. 893.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 333–343.

Original Russian Text Copyright © 2005 by Gurentsov, Eremin, Roth, Starke.

Based on a report at the VI Russian Conference on Mechanisms of Catalytic Reactions (Moscow, October 1–5, 2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurentsov, E.V., Eremin, A.V., Roth, P. et al. Formation of Iron-Carbon Nanoparticles behind Shock Waves. Kinet Catal 46, 309–318 (2005). https://doi.org/10.1007/s10975-005-0078-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10975-005-0078-8

Keywords

Navigation