Skip to main content
Log in

Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the effect of volume concentration (0.05, 0.1 and 0.15 %) and temperature (10–90 °C) on viscosity and surface tension of graphene–water nanofluid has been experimentally measured. The sodium dodecyl benzene sulfonate is used as the surfactant for stable suspension of graphene. The results showed that the viscosity of graphene–water nanofluid increases with an increase in the volume concentration of nanoparticles and decreases with an increase in temperature. An average enhancement of 47.12 % in viscosity has been noted for 0.15 % volume concentration of graphene at 50 °C. The enhancement of the viscosity of the nanofluid at higher volume concentration is due to the higher shear rate. In contrast, the surface tension of the graphene–water nanofluid decreases with an increase in both volume concentration and temperature. A decrement of 18.7 % in surface tension has been noted for the same volume concentration and temperature. The surface tension reduction in nanofluid at higher volume concentrations is due to the adsorption of nanoparticles at the liquid–gas interface because of hydrophobic nature of graphene; and at higher temperatures, is due to the weakening of molecular attractions between fluid molecules and nanoparticles. The viscosity and surface tension showed stronger dependency on volume concentration than temperature. Based on the calculated effectiveness of graphene–water nanofluids, it is suggested that the graphene–water nanofluid is preferable as the better coolant for the real-time heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C :

Coefficient of enhancement

C p :

Specific heat/Jkg−1 K−1

k :

Thermal conductivity/Wm−1 K−1

T :

Temperature/°C

\( \varphi \) :

Volume fraction

\( \mu \) :

Dynamic viscosity/mN s m−2

\( \sigma \) :

Surface tension/mN m−1

\( \rho \) :

Density/kg m−3

nf:

Nanofluid

f:

Base fluid

k:

Thermal conductivity

μ :

Dynamic viscosity

\( \infty \) :

Ambient

P:

Nanoparticle

References

  1. Selvakumar P, Suresh S. Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci. 2012;40:57–63.

    Article  CAS  Google Scholar 

  2. Alfieri F, Tiwari MK, Zinovik I, Poulikakos D, Brunschwiler T, Michel B. 3D integrated water cooling of a composite multilayer stack of chips. J Heat Transf. 2010;132:121402.

    Article  Google Scholar 

  3. Renfer A, Tiwari MK, Brunschwiler T, Michel B, Poulikakos D. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics. Exp Fluids. 2011;51:731–41.

    Article  Google Scholar 

  4. Godson L, Lal DM, Wongwises S. Measurement of thermo physical properties of metallic nanofluids for high temperature applications. Nanoscale Microscale Thermophys Eng. 2010;14:152–73.

    Article  CAS  Google Scholar 

  5. Godson L, Raja B, Lal DM, Wongwises S. Convective heat transfer characteristics of silver-water nanofluid under laminar and turbulent flow conditions. J Therm Sci Eng Appl. 2012;4(3):1–8.

    Article  Google Scholar 

  6. Asirvatham LG, Raja B, Lal DM, Wongwises S. Convective heat transfer of nanofluids with correlations. Particuology. 2011;9:626–31.

    Article  CAS  Google Scholar 

  7. Wong KV, Leon OD. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2010:1–11.

    Google Scholar 

  8. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  9. Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55:874–85.

    Article  CAS  Google Scholar 

  10. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  11. Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2010;14:629–41.

    Article  CAS  Google Scholar 

  12. Thomas S, Sobhan CBP. A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett. 2011;6:377.

    Article  Google Scholar 

  13. Shanthi R, Sundaram SA, Velraj R. Heat transfer enhancement using nanofluids—an overview. Therm Sci. 2012;16:423–44.

    Article  Google Scholar 

  14. Yiamsawas T, Dalkilic AS, Mahian O, Wongwises S. Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. J Dispers Sci Technol. 2013;34(12):1697–703.

    Article  CAS  Google Scholar 

  15. Aladag B, Salma H, Doner N, Mare T, Steven D, Estelle P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80.

    Article  CAS  Google Scholar 

  16. Hosseini SM, Moghadassi AR, Henneke DE. A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim. 2010;100:873–7.

    Article  Google Scholar 

  17. Hemmat EM, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluid. J Therm Anal Calorim. 2015;119:1817–24.

    Article  Google Scholar 

  18. Silambarasan M, Manikandan S, Rajan KS. Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int J Heat Mass Transf. 2012;55:7991–8002.

    Article  CAS  Google Scholar 

  19. Fedele L, Colla L, Bobbo S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig. 2012;35:1359–66.

    Article  CAS  Google Scholar 

  20. Tao W, Jiang NM, Yang LZ, Hui SC, KeFa C. Viscosity and aggregation structure of nanocolloidal dispersions. Chin Sci Bull. 2012;57:3644–51.

    Article  Google Scholar 

  21. Duan F, Kwek D, Crivoi A. Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Res Lett. 2011;6:248.

    Article  Google Scholar 

  22. Rudyak VY, Dimov SV, Kuznetsov VV. On the dependence of the viscosity coefficient of nanofluids on particle size and temperature. Tech Phys Lett. 2013;39:779–82.

    Article  CAS  Google Scholar 

  23. Kole M, Dey TK. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. 2013;113:084307.

    Article  Google Scholar 

  24. Yang JC, Li FC, Zhou WW, He YR, Jiang BC. Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int J Heat Mass Transf. 2012;55:3160–6.

    Article  CAS  Google Scholar 

  25. Utomo AT, Poth H, Robbins PT, Pacek AW. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf. 2012;55:7772–81.

    Article  CAS  Google Scholar 

  26. Kole M, Dey TK. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. Int J Therm Sci. 2011;50:1741–7.

    Article  CAS  Google Scholar 

  27. Dehkordi BL, Kazi SN, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar HSC. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf. 2013;49:1109–15.

    Article  Google Scholar 

  28. Vasheghani M, Marzbanrad E, Zamani C, Aminy M, Raissi B, Ebadzadeh T, Bafrooei HB. Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil. Heat Mass Transf. 2011;47:1401–5.

    Article  CAS  Google Scholar 

  29. Zhu DS, Wu SY, Wang N. Surface tension and viscosity of aluminum oxide nanofluids. In: Proceedings of 6th international symposium on multiphase flow, heat mass transfer and energy conversion, vol. 460, July 11–15, Xi’an, China; 2009.

  30. Wang F, Han L, Zhang Z, Fang X, Shi J, Ma W. Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene. Nanoscale Res Lett. 2012;73:14.

    Google Scholar 

  31. Tiwari AK, Ghosh P, Sarkar J. Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng. 2013;57:24–32.

    Article  CAS  Google Scholar 

  32. Gallego MJP, Casanova C, Legido JL, Piñeiro MM. CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib. 2011;300(1–2):188–96.

    Article  Google Scholar 

  33. Rashin MN, Hemalatha J. Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp Therm Fluid Sci. 2013;48:67–72.

    Article  Google Scholar 

  34. Mehrali M, Sadeghinezhad E, Latibari ST, Mehrali M, Togun H, Zubir MNM, Kazi SN, Metselaar HSC. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(15):1–12.

    Google Scholar 

  35. Moosavi M, Goharshadi EK, Youssefi A. Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow. 2010;31(4):599–605.

    Article  CAS  Google Scholar 

  36. Khaleduzzaman SS, Mahbubul IM, Shahrul IM, Saidur R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int Comm Heat Mass Transf. 2013;49:110–4.

    Article  CAS  Google Scholar 

  37. Godson L, Raja B, Raj V, Lal DM. Measurement of viscosity and surface tension of silver deionized water nanofluids. In: Proceedings of 37th national & 4th international conference on fluid mechanics and fluid power, vol. no. 2010, December 16–18, IIT Madras, Chennai, India; 2010.

  38. Godson L, Deepak K, Enoch C, Jefferson B, Raja B. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civil Mech Eng. 2014;14:489–96.

    Article  Google Scholar 

  39. Asirvatham LG, Nimmagadda R, Wongwises S. Heat transfer performance of screen mesh wick heat pipes using silver-water nanofluid. Int J Heat Mass Transf. 2013;60:201–9.

    Article  CAS  Google Scholar 

  40. Asirvatham LG, Nimmagadda R, Wongwises S. Operational limitations of heat pipes with silver-water nanofluids. J Heat Transf. 2013;135:1–10.

    Google Scholar 

  41. Kumaresan G, Venkatachalapathy S, Asirvatham LG, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. Int Comm Heat Mass Transf. 2014;57:208–15.

    Article  CAS  Google Scholar 

  42. Incropera FP, DeWeitt DP. Fundamentals of heat and mass transfer. 5th ed. New York: Wiley; 2005.

    Google Scholar 

  43. Prasher R, Song D, Wang J. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:1–3.

    Google Scholar 

  44. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  45. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  46. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the funding agency, the Department of Science and Technology (DST), Science and Engineering Research Board (SERB), (SB/FTP/ETA-362/2012), New Delhi, India. The third author would like to thank the National Science and Technology Development Agency for the support, the “Research Chair Grant” National Science and Technology Development Agency (NSTDA), the Thailand Research Fund (IRG5780005) and the National Research University Project (NRU) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazarus Godson Asirvatham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahammed, N., Asirvatham, L.G. & Wongwises, S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim 123, 1399–1409 (2016). https://doi.org/10.1007/s10973-015-5034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5034-x

Keywords

Navigation