Skip to main content
Log in

Kinetic studies of pyrolysis and combustion of Thar coal by thermogravimetry and chemometric data analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The concept of weighted mean activation energy has been used to assess the reactivity of Thar coal in terms of pyrolytic and combustion behavior using non-isothermal thermogravimetry. The samples were characterized as low sulfur and high volatile lignite to subbituminous coal. Modified Coats–Redfern method was applied to analyze the kinetic data of both processes. Thermal degradation of the samples studied was explained by three independent first-order kinetic steps. The good correlation coefficients for the independent first-order reaction models show the complexity of the overall process. The activation energy for pyrolysis reaction ranges from 19.20–63.55 to 23.68–54.49 kJ mol−1 for combustion profile. The samples of different rank were classified applying chemometric approach on the reactivity parameters. Principal component analysis was found as a statistical tool to organize the coal samples in accordance to ASTM classification. This study broadens the scope of thermal analysis in the field of coal utilization by assessing coal reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cakal GO, Yucel H, Guruz AG. Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. J Anal Appl Pyrolysis. 2007;80:262–8.

    Article  CAS  Google Scholar 

  2. Tromp PJJ, Kapteijn F, Moulijn JA. Characterization of coal pyrolysis by means of differential scanning calorimetry. 2. Quantitative heat effects in a H2 and in a CO2 atmosphere. Fuel Process Technol. 1989;23:63–74.

    Article  CAS  Google Scholar 

  3. Elbeyli IY, Piskin S. Combustion and pyrolysis characteristics of Tuncbilek lignite. J Therm Anal Calorim. 2006;83:721–6.

    Article  CAS  Google Scholar 

  4. Azhagurajan A, Nagaraj P. An experimental analysis of coal aluminium mixture in coal fired furnace. J Therm Anal Calorim. 2009;98(1):253–9.

    Article  CAS  Google Scholar 

  5. Mohalik NK, Panigrahi DC, Singh VK. Application of thermal analysis techniques to assess proneness of coal to spontaneous heating. J Therm Anal Calorim. 2009;98:507–19.

    Article  CAS  Google Scholar 

  6. Fangxian L, Shizong L, Youzhi C. Thermal analysis study of the effect of coal-burning additives on the combustion of coals. J Therm Anal Calorim. 2009;95(2):633–8.

    Article  CAS  Google Scholar 

  7. Ozbas KE. Effect of particle size on pyrolysis characteristics of Elbistan lignite. J Therm Anal Calorim. 2008;93(2):641–9.

    Article  CAS  Google Scholar 

  8. http://www.sindhmines.gov.pk/pdf/TharCoalResources-brochure.pdf. Accessed 14 Sep 2010.

  9. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Google Scholar 

  10. Vyazovkin S, Wight CA. Model-free and model-ftting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

  11. Otero M, Gomez X, Garcia AI, Moran A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. J Therm Anal Calorim. 2008;93(2):619–26.

    Article  CAS  Google Scholar 

  12. Russell NV, Beeley TJ, Man CK, Gibbins JR, Williamson J. Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes. Fuel Process Technol. 1998;57:113–30.

    Google Scholar 

  13. Cumming JW. Reactivity assessment of coals via a weighted mean activation energy. Fuel. 1984;63:1436–40.

    Article  CAS  Google Scholar 

  14. Carpenter RC, Diederichs H. Experimental engineering. 8th ed. Wiley: New York; 1913. p. 507.

  15. Ceylan K, Karaca H, Onal Y. Thermogravimetric analysis of pretreated Turkish lignites. Fuel. 1999;78:1109–16.

    Article  CAS  Google Scholar 

  16. Guldogan Y, Bozdemir TO, Durusoy T. Effect of heating rate on pyrolysis kinetics. Energy Sour. 2000;22:305–12.

    Article  CAS  Google Scholar 

  17. Elbeyli IY, Piskin S. Pyrolysis kinetics of Turkish bituminous coals by thermal analysis. Turk J Eng Environ Sci. 2004;28:233–9.

    CAS  Google Scholar 

  18. Kok MV. Temperature-controlled combustion and kinetics of different rank coal samples. J Therm Anal Calorim. 2005;79:175–80.

    Article  Google Scholar 

  19. Kizgut S, Cuhadaroglu D, Toroglu I. Thermogravimetric characterization of Turkish bituminous coals for combustion. Turk J Chem. 2003;27:521–8.

    CAS  Google Scholar 

  20. Tesch S, Otto M. Application of principal-component analysis to the interpretation of brown coal properties. Fuel. 1995;74(7):978–82.

    Article  CAS  Google Scholar 

  21. Figueiredo N, Coutinho CA. Analysis of principal components of coal ash by X-ray fluorescence spectrometry. Metal. ABM. 1979;35(260):453–7.

    CAS  Google Scholar 

  22. Khare P, Baruah BP. Chemometric analysis of trace elements distribution in raw and thermally treated high sulphur coals. Fuel Process Technol. 2010;91(11):1691–701.

    Article  CAS  Google Scholar 

  23. Hurst MA, The International Coal Encyclopedia; Coal services Ltd., Time off set Pte Ltd. 1st ed. of the international encyclopedia (ICE). vol. 1, 1990. p 11.

  24. Cigdem S, Sadriye K. Effect of mineral matter on the burning profile of lignites. Thermochim Acta. 1996;285:35–46.

    Article  Google Scholar 

  25. Quanrun L, Haoquan H, Qiangu Z, Shengwei Z, Guohua C. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel. 2004;83:713–8.

    Article  Google Scholar 

  26. Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  27. Kaiser HF. The application of electronic computer to factor analysis. Educ Psychol Meas. 1960;20:141–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nasiruddin Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwar, A., Nasiruddin Khan, M. & Azhar, K.F. Kinetic studies of pyrolysis and combustion of Thar coal by thermogravimetry and chemometric data analysis. J Therm Anal Calorim 109, 97–103 (2012). https://doi.org/10.1007/s10973-011-1725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1725-0

Keywords

Navigation