Skip to main content
Log in

Preparation, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Monodisperse ZnO colloidal spheres were produced by a two-stage sol–gel reaction process. The sub-micrometer sized ZnO/Ag composite spheres were prepared by photodeposition route. The photochemical reduction method needs no other reductant or surfactant and is an effective means to enable the uniform distribution of Ag nanoparticles (NPs) over the ZnO spheres. The size and shape as well as the optical properties of the composites were characterized with transmission electron microscopy and UV–Vis spectroscopy. The results showed that average size of ZnO and Ag NPs among the composites was around 480, 10 nm, respectively. Ag NPs were relatively monodisperse, presented spherical shape, and their deposition over the ZnO surface was uniform. Formation of Ag NPs on the surface of ZnO spheres was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy, and the catalytic performance and antibacterial activity was also investigated. The ZnO/Ag composites possess excellent catalytic performance for catalytic reduction of 4-nitrophenol to 4-aminophenol and can effectively inhibit Escherichia coli and Bacillus subtilis growth at 0.25 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui L, Wang A, Wu DY, Ren B, Tian ZQ (2008) J Phys Chem C 112:17618–17624

    Article  Google Scholar 

  2. Yin YD, Alivisatos AP (2005) Nature 437:664–670

    Article  Google Scholar 

  3. Sau TK, Rogach AL (2010) Adv Mater 22:1781–1804

    Article  Google Scholar 

  4. Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA (2009) Small 5:646–664

    Article  Google Scholar 

  5. Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060

    Article  Google Scholar 

  6. Pradhan N, Pal A, Pal T (2002) Colloids Surf A 196:247–257

    Article  Google Scholar 

  7. Bharat B, Gregory JG, Michelle JA, Matthew EB (2013) Langmuir 29:4225–4234

    Article  Google Scholar 

  8. Zhang HJ, Chen GH (2009) Environ Sci Technol 43:2905–2910

    Article  Google Scholar 

  9. Matthew D, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) ACS Nano 3:984–994

    Article  Google Scholar 

  10. Tang B, Li JL, Hou XL, Afrin T, Sun L, Wang XA (2013) Ind Eng Chem Res 52:4556–4563

    Article  Google Scholar 

  11. Deng ZW, Zhu HB, Peng B, Chen H, Sun YF, Gang XD, Jin PJ, Wang JL (2012) ACS Appl Mater Interfaces 4:5625–5632

    Article  Google Scholar 

  12. Deng ZW, Chen M, Wu LM (2007) J Phys Chem C 111:11692–11698

    Article  Google Scholar 

  13. Du XY, He J, Zhu J, Sun LJ, An SS (2012) Appl Surf Sci 258:2717–2723

    Article  Google Scholar 

  14. Perkas N, Lipovsky A, Amirian G, Nitzan Y, Gedanken A (2013) J Mater Chem B 1:5309–5316

    Article  Google Scholar 

  15. Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Justin CC, Remita H (2013) J Phys Chem C 117:1955–1962

    Article  Google Scholar 

  16. Cheng XL, Xu YM, Gao S, Zhao H, Huo LH (2011) Sens Actuators B 155:716–721

    Article  Google Scholar 

  17. Zhong LS, Hu JS, Cui ZM, Wan LJ, Song WG (2007) Chem Mater 19:4557–4562

    Article  Google Scholar 

  18. Yu CL, Yang K, Zhou WQ, Fan QZ, Wei LF, Yu JC (2013) J Phys Chem Solids 74:1714–1720

    Article  Google Scholar 

  19. Su W, Wei SS, Hu SQ, Tang JX (2009) J Hazard Mater 172:716–720

    Article  Google Scholar 

  20. Senthilraja A, Subash B, Krishnakumar B, Rajamanickam D, Swaminathan M, Shanthi M (2014) Mater Sci Semicond Process 22:83–91

    Article  Google Scholar 

  21. Jezequel D, Guenot J, Jouini N, Fievet F (1994) Mater Sci Forum 152–153:339–342

    Article  Google Scholar 

  22. Moudler JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-ElmerEden, Eden Prairie

    Google Scholar 

  23. He X, Zhao XJ, Liu BS (2008) Appl Surf Sci 254:1705–1709

    Article  Google Scholar 

  24. Zhang F, Pi Y, Cui J, Yang YL, Zhang X, Guan NJ (2007) J Phys Chem C 111:3756–3761

    Article  Google Scholar 

  25. Pradhan N, Pal A, Pal T (2001) Langmuir 17:1800–1802

    Article  Google Scholar 

  26. An Q, Yu M, Zhang YT, Ma WF, Guo J, Wang CH (2012) J Phys Chem C 116:22432–22440

    Article  Google Scholar 

  27. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Chem Eur J 12:2131–2138

    Article  Google Scholar 

  28. Chi Y, Yuan Q, Li Y j, Tu JC, Zhao L, Li N, Li XT (2012) J Colloid Interface Sci 383:96–102

    Article  Google Scholar 

  29. Mandlimath TR, Gopal B (2011) J Mol Catal A Chem 350:9–15

    Article  Google Scholar 

  30. Deng YH, Cai Y, Sun ZK, Zhao DY (2010) J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21373132) and Natural Science Foundation of Shannxi Province of China (No. 2010JM2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, S., Ma, J. et al. Preparation, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres. J Sol-Gel Sci Technol 72, 171–178 (2014). https://doi.org/10.1007/s10971-014-3440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3440-3

Keywords

Navigation