Skip to main content
Log in

Characterization of HPGe gamma spectrometers by geant4 Monte Carlo simulations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Two coaxial and a low-energy HPGe detector were characterized with Monte Carlo simulations, using the geant4 toolkit. The geometry of the detectors, including the dimensions of the crystal and the internal structural parts, were initially taken from the factory specifications and from X-ray radiographies, and were later fine-tuned. The detector response functions, with special emphasis on the absolute full-energy peak efficiencies and peak-to-total ratios, were calculated and compared to experimental data taken at different measurement geometries. Between 150 keV and 11 MeV an agreement within 1–2 standard deviation has been achieved, whereas systematic deviations were experienced at lower energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wainio KM, Knoll GF (1966) Calculated gamma ray response characteristics of semiconductor detectors. Nucl Instrum Methods 44:213–223

    Article  CAS  Google Scholar 

  2. MCNP5: X-5 MONTE CARLO TEAM, MCNP (2003) A general Monte Carlo N-particle transport code, Version 5, Volume I: overview and theory, LA-UR-03-1987, Los Alamos National Laboratory

  3. Nelson WR, Hirayama H, Rogers DWO (1985) The EGS4 code system report SLAC-265. Stanford Linear Accelerator Center, Stanford

    Google Scholar 

  4. Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE-2011: a code system for Monte Carlo simulation of electron and photon transport, OECD NEA Data Bank NEA-1525, https://www.oecd-nea.org/tools/abstract/detail/nea-1525 or https://rsicc.ornl.gov/codes/ccc/ccc7/ccc-782.html. Accessed 19 Jan 2014

  5. Halbleib JA, Mehlhorn TA (1986) The integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes. Nucl Sci Eng 92, 338–339. Also in Sandia Reports SAND84-0573, 1984 and SAND91-1634, 1992

  6. Ferrari A, Sala PR, Fassó A, Ranft J (2005) FLUKA: a multi-particle transport code (version 2005), CERN-2005-10, INFN/TC-05/11, SLAC-R-773. CERN, Geneva

    Google Scholar 

  7. Agostinelli S et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods 506(3):250–303

    Article  CAS  Google Scholar 

  8. Allison J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  9. Pia MG, Basaglia T, Bell ZW, Dressendorfer PV, Geant4 in Scientific Literature. In: Proceedings of the nuclear science symposium and medical imaging conference 2009, Orlando. http://arxiv.org/pdf/0912.0360.pdf. Accessed 19 Jan 2014

  10. Salvat F, Fernández-Varea JM (2009) Overview of physical interaction models for photon and electron transport used in Monte Carlo codes. Metrologia 46:S112–S138

    Article  CAS  Google Scholar 

  11. Hardy JC, Iacob VE, Sanchez-Vega M, Effinger RT, Lipnik P, Mayes VE, Willis DK, Helmer RG (2002) Precise efficiency calibration of an HPGe detector: source measurements and Monte Carlo calculations with sub-percent precision. Appl Radiat Isot 56:65–69

    Article  CAS  Google Scholar 

  12. Helmer RG, Hardy JC, Iacob VE, Sanchez-Vega M, Neilson RG, Nelson J (2003) The use of Monte Carlo calculations in the determination of a Ge detector efficiency curve. Nucl Instrum Methods A 511:360–381

    Article  CAS  Google Scholar 

  13. Helmer RG, Nica N, Hardy JC, Iacob VE (2004) Precise efficiency calibration of an HPGe detector up to 3.5 MeV, with measurements and Monte Carlo calculations. Appl Radiat Isot 60:173–177

    Article  CAS  Google Scholar 

  14. Park CS, Sun GM, Choi HD (2003) J Korean Nucl Soc 35:234

    CAS  Google Scholar 

  15. Keyser RM, Hensley WK (2005) Efficiency of Ge detectors as a function of energy and incident geometry: comparison of measurements and calculations. J Radioanal Nucl Chem 264(1):259–264

    Article  CAS  Google Scholar 

  16. Hurtado S, Garcia-Leon M, Garcia-Tenorio R (2004) GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl Instrum Methods 518:764–774

    Article  CAS  Google Scholar 

  17. McNamara AL, Heijnis H, Fierro D, Reinhard MI (2012) The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations. J Environ Radioact 106:1–7

    Article  CAS  Google Scholar 

  18. Boson J, Agren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods Phys Res A 587:304–314

    Article  CAS  Google Scholar 

  19. Ródenas J, Pascual A, Zarza I, Serradell V, Ortiz J, Ballesteros L (2003) Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl Instrum Methods Phys Res A 496:390–399

    Article  Google Scholar 

  20. Britton R, Burnett J, Davies A, Regan PH (2013) Determining the efficiency of a broad-energy HPGe detector using Monte Carlo simulations. J Radioanal Nucl Chem 295(3):2035–2041. doi:10.1007/s10967-012-2203-2

    Article  CAS  Google Scholar 

  21. Sahin D, Unlu K (2009) Modeling a gamma spectroscopy system and predicting spectra with Geant-4. J Radioanal Nucl Chem 282:167–172. doi:10.1007/s10967-009-0317-y

    Article  CAS  Google Scholar 

  22. Budjás D, Heisel M, Maneschg W, Simgen H (2009) Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl Radiat Isot 67:706–710

    Article  CAS  Google Scholar 

  23. Laborie J-M, Le Petit G, Abt D, Girard M (2002) Monte Carlo calculation of the efficiency response of a low-background well-type HPGe detector. Nucl Instrum Methods 479(2–3):618–630

    Article  CAS  Google Scholar 

  24. Kovácik A, Sykora I, Povinec PP (2013) Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J Radioanal Nucl Chem 298:665–672

    Article  CAS  Google Scholar 

  25. Moens L, De Donder J, Lin X, De Corte F, De Wispelaere A (1981) A Simonits and Julien Hoste, calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Methods Phys Res 187(2–3):451–472

    Article  CAS  Google Scholar 

  26. Kis Z, Völgyesi P, Szabó Zs (2013) DÖME revitalizing a low-background counting chamber and developing a radon-tight sample holder for gamma-ray spectroscopy measurements. J Radioanal Nucl Chem 298:2029–2035. doi:10.1007/s10967-013-2691-8

    Article  CAS  Google Scholar 

  27. Szentmiklósi L, Belgya T, Révay Zs, Kis Z (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor. J Radioanal Nucl Chem 286:501–505. doi:10.1007/s10967-010-0765-4

    Article  CAS  Google Scholar 

  28. Fazekas B, Ostor J, Kis Z, Simonits A, Molnar GL (1998) Quality assurance features of “HYPERMET-PC”. J Radioanal Nucl Chem 233(1–2):101–103

    Article  CAS  Google Scholar 

  29. Molnár GL, Révay Z, Belgya T (2002) Wide energy range efficiency calibration method for Ge detectors. Nucl Instrum Methods Phys Res Sect A 489(1–3):140–159

    Article  Google Scholar 

  30. Chauvie S, Guatelli S, Ivanchenko V, Longo F, Mantero A, Mascialino B, Nieminen P, Pandola L, Parlati S, Peralta L, Pia MG, Piergentili M, Rodrigues P, Saliceti S, Trindade A (2004) Geant4 low energy electromagnetic physics, IEEE nuclear science symposium conference record, 3: 1881–1885

  31. Lechner A, Pia MG, Sudhakar M (2009) Validation of Geant4 low energy electromagnetic processes against precision measurements of electron energy deposition IEEE transactions on nuclear science, 56(2)

  32. Corte De F (1987) The k 0 standardization method: a move to the optimization of NAA. Thesis, University of Gent, Belgium

Download references

Acknowledgments

We gratefully acknowledge the help of Márton Balaskó in taking the X-ray radiograms. We also thank András Simonits and Ibolya Sziklai-László who arranged the target activation of the single-line sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Szentmiklósi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szentmiklósi, L., Belgya, T., Maróti, B. et al. Characterization of HPGe gamma spectrometers by geant4 Monte Carlo simulations. J Radioanal Nucl Chem 300, 553–558 (2014). https://doi.org/10.1007/s10967-014-2976-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2976-6

Keywords

Navigation