Skip to main content
Log in

Influence of humic acids on the actinide migration in the environment: suitable humic acid model substances and their application in studies with uranium—a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Humic acids (HA) can influence the speciation of metal ions, e.g., actinide ions, and thus their migration in the environment. Therefore, knowledge of the impact of HA on the actinide migration is required to assess their transport in natural systems. However, due to the complex and heterogeneous nature of HA, there are a lot of difficulties in the thermodynamic description of their geochemical interaction behavior. A more basic understanding of the interaction processes of HA can be obtained by investigations applying HA model substances with more specific and tailored properties. This work gives a review of selected types of HA model substances (HA-alike melanoidins, synthetic HA with pronounced redox functionality, modified HA with blocked phenolic/acidic OH groups, synthetic humic substance-clay-associates), their synthesis, isotopic labeling, and characterization in comparison to isolated natural HA. Examples for their application in various geochemical studies, such as complexation, redox, sorption and migration studies with uranium as representative for actinides are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Choppin GR (1988) Radiochim Acta 44/45:23–28

    Google Scholar 

  2. Silva RJ, Nitsche H (1995) Radiochim Acta 70/71:377–396

    CAS  Google Scholar 

  3. Stevenson FJ (1994) Humus chemistry. Genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  4. Xia K, Weesner F, Bleam WF, Bloom PR, Skyllberg UL, Helmke PA (1998) Soil Sci Soc Am J 62:1240–1246

    Article  CAS  Google Scholar 

  5. Jain A, Mohapatra M, Godbole SV, Tomar BS (2008) Spectrochim Acta A 71:1007–1010

    Article  CAS  Google Scholar 

  6. Marmodée B, de Klerk JS, Ariese F, Gooijer C, Kumke MU (2009) Anal Chim Acta 652:285–294

    Article  Google Scholar 

  7. Marmodée B, de Klerk J, Ariese F, Gooijer C, Kumke MU (2009) Z Naturforsch 64a:242–250

    Google Scholar 

  8. Panak P, Klenze R, Kim JI, Wimmer H (1995) J Alloys Compd 225:261–266

    Article  CAS  Google Scholar 

  9. Sasaki T, Kobayashi T, Takagi I, Moriyama H, Fujiwara A, Kulyako YM, Perevalov SA, Myasoedov BF (2009) Radiochim Acta 97:193–197

    Article  CAS  Google Scholar 

  10. Lenhart JJ, Cabaniss SE, MacCarthy P, Honeyman BD (2000) Radiochim Acta 88:345–353

    Article  CAS  Google Scholar 

  11. Brachmann A, Geipel G, Bernhard G, Nitsche H (2002) Radiochim Acta 90:147–153

    Article  CAS  Google Scholar 

  12. Frost L, Moll H, Bernhard G (2010) Radiochim Acta (accepted)

  13. Denecke MA, Pompe S, Reich T, Moll H, Bubner M, Heise KH, Nicolai R, Nitsche H (1997) Radiochim Acta 79:151–159

    CAS  Google Scholar 

  14. Denecke MA, Reich T, Pompe S, Bubner M, Heise KH, Nitsche H, Allen PG, Bucher JJ, Edelstein NM, Shuh DK, Czerwinski KR (1998) Radiochim Acta 82:103–108

    CAS  Google Scholar 

  15. Raditzky B, Schmeide K, Sachs S, Geipel G, Bernhard G (2010) Polyhedron 29:620–626

    Article  CAS  Google Scholar 

  16. Schlosser F, Krüger S, Rösch N (2006) Inorg Chem 45:1480–1490

    Article  CAS  Google Scholar 

  17. Ray RS, Krüger S, Rösch N (2009) Dalton Trans 3590–3598

  18. Kremleva A, Krüger S, Rösch N (2009) Inorg Chim Acta 362:2542–2550

    Article  CAS  Google Scholar 

  19. Ray RS, Krüger S, Rösch N (2010) Inorg Chim Acta 363:263–269

    Article  CAS  Google Scholar 

  20. Tochiyama O, Yoshino H, Kubota T, Sato M, Tanaka K, Niibori Y, Mitsugashira T (2000) Radiochim Acta 88:547–552

    Article  CAS  Google Scholar 

  21. Montavon G, Markai S, Billard I, Nehlig A, Grambow B (2002) Radiochim Acta 90:289–296

    Article  CAS  Google Scholar 

  22. Plaschke M, Rothe J, Denecke MA, Fanghänel Th (2004) J Electron Spectrosc Relat Phenom 135:55–64

    Article  Google Scholar 

  23. Maillard LC (1916) Ann Chim (Paris) 5:258–317

    CAS  Google Scholar 

  24. Ikan R, Dorsey T, Kaplan IR (1990) Anal Chim Acta 232:11–18

    Article  CAS  Google Scholar 

  25. Eller W, Koch K (1920) Ber Dtsch Chem Ges 53:1469–1476

    Article  Google Scholar 

  26. Mathur SP, Schnitzer M (1978) Soil Sci Soc Am J 42:591–596

    Article  CAS  Google Scholar 

  27. Adhikari M, Sen P, Das K (1985) Proc Indian Nat Sci Acad A 51:876–881

    CAS  Google Scholar 

  28. Helbig B, Klöcking R (1983) Z Physiother 33:31–37

    Google Scholar 

  29. Jung AV, Frochot C, Parant S, Lartiges BS, Selve C, Viriot ML, Bersillon JL (2005) Org Geochem 36:1252–1271

    Article  CAS  Google Scholar 

  30. Giannakopoulos E, Drosos M, Deligiannakis Y (2009) J Colloid Interf Sci 336:59–66

    Article  CAS  Google Scholar 

  31. Enders C, Theis K (1938) Brennstoffchemie 19:360–365

    CAS  Google Scholar 

  32. Ishiwatari R, Morinaga S, Yamamoto S, Machihara T, Rubinsztain Y, Ioselis P, Aizenshtat Z, Ikan R (1986) Org Geochem 9:11–23

    Article  CAS  Google Scholar 

  33. Yamamoto S, Ishiwatari R (1989) Org Geochem 14:479–489

    Article  CAS  Google Scholar 

  34. Pompe S, Bubner M, Denecke MA, Reich T, Brachmann A, Geipel G, Nicolai R, Heise KH, Nitsche H (1996) Radiochim Acta 74:135–140

    CAS  Google Scholar 

  35. Pompe S (1997) Entwicklung huminsäureähnlicher Melanoidine als Funktionalitätsmodelle für Huminsäuren und ihr Vergleich mit Fluka-Huminsäure hinsichtlich ihres Komplexbildungsverhaltens gegenüber Uran(VI). PhD thesis, TU Dresden, Dresden

  36. Pompe S, Brachmann A, Bubner M, Geipel G, Heise KH, Bernhard G, Nitsche H (1998) Radiochim Acta 82:89–95

    CAS  Google Scholar 

  37. Sachs S, Heise KH, Bernhard G (2003) In: Buckau G (ed) Humic substances in performance assessment of nuclear waste disposal: actinide and iodine migration in the far-field. First technical progress report. Wissenschaftliche Berichte, FZKA 6800, Forschungszentrum Karlsruhe, Karlsruhe

  38. Sachs S, Schmeide K, Brendler V, Křepelová A, Mibus J, Geipel G, Heise KH, Bernhard G (2004) Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Wissenschaftlich-Technische Berichte, FZR-399, Forschungszentrum Rossendorf, Dresden. http://www.fzd.de/publications/005964/5964.pdf

  39. Pompe S, Schmeide K, Bubner M, Geipel G, Heise KH, Bernhard G, Nitsche H (2000) Radiochim Acta 88:553–558

    Article  CAS  Google Scholar 

  40. Sachs S, Křepelová A, Schmeide K, Koban A, Günther A, Mibus J, Brendler V, Geipel G, Bernhard G (2007) Joint project: migration of actinides in the system clay, humic substance, aquifer. Migration behavior of actinides (uranium, neptunium) in clays: characterization and quantification of the influence of humic substances. Wissenschaftlich-Technische Berichte, FZD-460, Forschungszentrum Dresden-Rossendorf, Dresden. http://www.fzd.de/publications/009094/9094.pdf

  41. Schnitzer M, Khan SU (1972) Humic substances in the environment. Marcel Dekker, New York

    Google Scholar 

  42. Bubner M, Heise KH (1994) In: Nitsche H, Bernhard G (eds) Institute of Radiochemistry. Annual report 1993. FZR-43, Forschungszentrum Rossendorf, Dresden

  43. Pompe S, Bubner M, Schmeide K, Heise KH, Bernhard G, Nitsche H (2000) Influence of humic acids on the migration behavior of radioactive and non-radioactive substances under conditions close to nature. Synthesis, radiometric determination of functional groups, complexation. Wissenschaftlich-Technische Berichte, FZR-290, Forschungszentrum Rossendorf, Dresden. http://www.fzd.de/publications/002642/2642.pdf

  44. Angrick M, Rewicki D (1980) Chemie in unserer Zeit 14:149–157

    Article  CAS  Google Scholar 

  45. Pompe S, Bubner M, Meyer M, Heise KH, Nicolai R, Nitsche H (1998) In: Nitsche H (ed) Institute of Radiochemistry. Annual report 1997. FZR-218, Forschungszentrum Rossendorf, Dresden

  46. Sachs S, Reich T, Bernhard G (2010) Radiochim Acta 98:467–477

    Article  CAS  Google Scholar 

  47. Carlsen L, Lassen P, Christiansen JV, Warwick P, Hall A, Randall A (1992) Radiochim Acta 58/59:371–376

    Google Scholar 

  48. Warwick P, Carlsen L, Randall A, Zhao R, Lassen P (1993) Chem Ecol 8:65–80

    Article  CAS  Google Scholar 

  49. Franke K, Patt JT, Patt M, Kupsch H, Steinbach J (2004) Radiochim Acta 92:359–362

    Article  CAS  Google Scholar 

  50. Mansel A, Kupsch H (2007) Appl Radiat Isotopes 65:793–797

    Article  CAS  Google Scholar 

  51. Tinnacher RM, Honeyman BD (2007) Environ Sci Technol 41:6776–6782

    Article  CAS  Google Scholar 

  52. Franke K, Patt JT, Kupsch H, Warwick P (2008) Environ Sci Technol 42:4083–4087

    Article  CAS  Google Scholar 

  53. Franke K, Kupsch H (2010) Radiochim Acta 98:333–339

    Article  CAS  Google Scholar 

  54. Badun GA, Chernysheva MG, Tyasto ZA, Kulikova NA, Kudryavtsev AV, Perminova IV (2010) Radiochim Acta 98:161–166

    Article  CAS  Google Scholar 

  55. Thorn KA, Steelink C, Wershaw RL (1987) Org Geochem 11:123–137

    Article  CAS  Google Scholar 

  56. Thorn KA, Arterburn JB, Mikita MA (1992) Environ Sci Technol 26:107–116

    Article  CAS  Google Scholar 

  57. Bortiatynski JM, Hatcher PG, Minard RD (1997) In: Nanny MA, Mineer RA, Leenheer JA (eds) Nuclear magnetic resonance spectroscopy in environmental chemistry. Oxford University Press, Oxford

    Google Scholar 

  58. Bubner M, Pompe S, Meyer M, Heise KH, Nitsche H (1998) J Labelled Compd Radiopharm XLI:1057–1060

    Google Scholar 

  59. Sachs S, Brendler E (2007) In: Bernhard G (ed) Institute of Radiochemistry. Annual report 2006. Wissenschaftlich-Technische Berichte, FZD-459, Forschungszentrum Dresden-Rossendorf, Dresden

  60. Sachs S, Bubner M, Schmeide K, Choppin GR, Heise KH, Bernhard G (2002) Talanta 57:999–1009

    Article  CAS  Google Scholar 

  61. Aeschbacher M, Sander M, Schwarzenbach RP (2010) Environ Sci Technol 44:87–93

    Article  CAS  Google Scholar 

  62. Schmeide K, Bernhard G (2009) Radiochim Acta 97:603–611

    Article  CAS  Google Scholar 

  63. Sachs S, Bernhard G (2011) Geoderma 162:132–140

    Article  CAS  Google Scholar 

  64. Schmeide K, Bernhard G (2010) Appl Geochem 25:1238–1247

    Article  CAS  Google Scholar 

  65. Helburn RS, MacCarthy P (1994) Anal Chim Acta 295:263–272

    Article  CAS  Google Scholar 

  66. Fimmen RL, Cory RM, Chin YP, Trouts TD, McKnight DM (2007) Geochim Cosmochim Acta 71:3003–3015

    Article  CAS  Google Scholar 

  67. Szulczewski MD, Helmke PA, Bleam WF (2001) Environ Sci Technol 35:1134–1141

    Article  CAS  Google Scholar 

  68. Schmeide K, Sachs S, Bernhard G (2011) Radiochim Acta (in preparation)

  69. Österberg R, Shirshova L (1997) Geochim Cosmochim Acta 61:4599–4604

    Article  Google Scholar 

  70. Peretyazhko T, Sposito G (2006) Geoderma 137:140–146

    Article  CAS  Google Scholar 

  71. Schmeide K, Sachs S, Bubner M, Reich T, Heise KH, Bernhard G (2003) Inorg Chim Acta 351:133–140

    Article  CAS  Google Scholar 

  72. Sachs S, Schmeide K, Reich T, Brendler V, Heise KH, Bernhard G (2005) Radiochim Acta 93:17–25

    Article  CAS  Google Scholar 

  73. Sachs S, Bernhard G (2005) Radiochim Acta 93:141–145

    Article  CAS  Google Scholar 

  74. Lagaly G (1993) In: Jasmund K, Lagaly G (eds) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, Germany

  75. Claret F, Schäfer T, Bauer A, Buckau G (2003) Sci Total Environ 317:189–200

    Article  CAS  Google Scholar 

  76. Cordouan A, Christl I, Meylan S, Wersin P, Kretzschmar R (2007) Appl Geochem 22:1537–1548

    Article  Google Scholar 

  77. Schäfer T, Claret F, Bauer A, Griffault L, Ferrage E, Lanson B (2003) J Phys France 104:413–416

    Article  Google Scholar 

  78. Sachs S, Bernhard G (2008) Chemosphere 72:1441–1447

    Article  CAS  Google Scholar 

  79. Constanzo PA, Guggenheim S (2001) Clays Clay Miner 49:371–453

    Article  Google Scholar 

  80. Křepelová A, Reich T, Sachs S, Drebert J, Bernhard G (2008) J Colloid Interf Sci 319:40–47

    Article  Google Scholar 

  81. Kim JI, Czerwinski KR (1996) Radiochim Acta 73:5–10

    CAS  Google Scholar 

  82. Schmeide K, Brendler V, Pompe S, Bubner M, Heise KH, Bernhard G (2000) In: Buckau G (ed) Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. Third technical progress report. Wissenschaftliche Berichte, FZKA 6524, Forschungszentrum Karlsruhe, Karlsruhe, pp 149–162

  83. Křepelová A, Sachs S, Bernhard G (2006) Radiochim Acta 94:825–833

    Article  Google Scholar 

  84. Schmeide K, Reich T, Sachs S, Bernhard G (2006) Inorg Chim Acta 359:237–242

    Article  CAS  Google Scholar 

  85. Schmeide K, Reich T, Sachs S, Brendler V, Heise KH, Bernhard G (2005) Radiochim Acta 93:187–196

    Article  CAS  Google Scholar 

  86. Nefedov VI, Teterin YuA, Lebedev AM, Teterin AYu, Dementjev AP, Bubner M, Reich T, Pompe S, Heise KH, Nitsche H (1998) Inorg Chim Acta 273:234–237

    Article  CAS  Google Scholar 

  87. Schmeide K, Brendler V, Pompe S, Bubner M, Heise KH, Bernhard G (2000) In: Buckau G (ed) Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. Third technical progress report. Wissenschaftliche Berichte, FZKA 6524, Forschungszentrum Karlsruhe, Karlsruhe, pp 171–188

  88. Křepelová A, Brendler V, Sachs S, Baumann N, Bernhard G (2007) Environ Sci Technol 41:6142–6147

    Article  Google Scholar 

  89. Joseph C, Schmeide K, Sachs S, Brendler V, Geipel G, Bernhard G (2011) Chem Geol. doi:10.1016/j.chemgeo.2011.03.001

  90. Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) J Contam Hydrol 89:199–217

    Article  CAS  Google Scholar 

  91. Artinger R, Seibert A, Marquardt CM, Trautmann N, Kratz JV, Kim JI (2000) Radiochim Acta 88:609–612

    Article  CAS  Google Scholar 

  92. Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) J Contam Hydrol 58:1–12

    Article  CAS  Google Scholar 

  93. Plaschke M, Rothe J, Schäfer T, Denecke MA, Dardenne K, Pompe S, Heise KH (2002) Coll Surf A 197:245–256

    Article  CAS  Google Scholar 

  94. Schmeide K, Bernhard G (2004) In: Buckau G (ed) Humic substances in performance assessment of nuclear waste disposal: actinide and iodine migration in the far-field. Second technical progress report. Wissenschaftliche Berichte, FZKA 6969, Forschungszentrum Karlsruhe, Karlsruhe

  95. Seibert A, Mansel A, Marquardt CM, Keller H, Kratz JV, Trautmann N (2001) Radiochim Acta 89:505–510

    Article  CAS  Google Scholar 

  96. Kumke MU, Eidner S, Krüger T (2005) Environ Sci Technol 39:9528–9533

    Article  CAS  Google Scholar 

  97. Crea F, De Stefano C, Gianguzza A, Pettignano A, Piazzese D, Sammartano S (2009) J Chem Eng Data 54:589–605

    CAS  Google Scholar 

  98. Ender V, Schumann T, Sachs S, Bernhard G (2006) Power Plant Chem 8:541–549

    CAS  Google Scholar 

  99. Reiller P, Mercier-Bion F, Gimenez N, Barré N, Miserque F (2006) Radiochim Acta 94:739–745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge to all colleagues who contributed to the development, synthesis, characterization and application of synthetic humic acid model substances. These studies were financially supported by the German Federal Ministry of Education, Science and Technology (contract No. 02 E 88150), the German Federal Ministry of Economics and Technology (contract Nos. 02 E 9299, 02 E 9673, 02 E 10156), and the EC Commission (contract No. FIKW-CT-2001-00128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Sachs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, S., Bernhard, G. Influence of humic acids on the actinide migration in the environment: suitable humic acid model substances and their application in studies with uranium—a review. J Radioanal Nucl Chem 290, 17–29 (2011). https://doi.org/10.1007/s10967-011-1084-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1084-0

Keywords

Navigation