Skip to main content
Log in

Study of the crosslink density, dynamo-mechanical behaviour and microstructure of hot and cold SBR vulcanizates

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Vulcanizates of hot and cold styrene-butadiene rubber (SBR) were prepared with five different cure systems based on sulphur, 2-mercaptobenzothiazole disulphide (MBTS) and tetramethylthiuram disulphide (TMTD). The degree of crosslinking was investigated by swelling in benzene and stress-strain analysis. Thiol-amine chemical probes were employed to determine the type of crosslinks in the sulphur vulcanizates, and their dynamic-mechanical properties and thermal stability were studied in both the raw (non-crosslinked) and crosslinked state. The butadiene microstructure and the total unsaturation were determined by Raman spectroscopy. The influence of the crosslink density and the type of crosslink formed on the measured properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blackley DC (1997) In: Lovell PA, El-Aasser MS (eds) Emulsion Polymerization and Emulsion Polymers. Wiley, New York

    Google Scholar 

  2. Youssef MH (2003) Polym Test 22:235. doi:10.1016/S0142-9418(02)00088-0

    Article  CAS  Google Scholar 

  3. Marzocca AJ, Goyanes S (2004) J Appl Polym Sci 91:2601. doi:10.1002/app.13463

    Article  CAS  Google Scholar 

  4. Marzocca AJ, Mansilla MA (2007) J Appl Polym Sci 103:1105. doi:10.1002/app.25264

    Article  CAS  Google Scholar 

  5. Salgueiro W, Marzocca A, Somoza A, Consolati G, Cerveny S, Quasso F, Goyanes S (2004) Polymer (Guildf) 45:6037. doi:10.1016/j.polymer.2004.05.008

    Article  CAS  Google Scholar 

  6. Bobobza L, Lapra A (2000) J Polym Sci Part B. Polym Phys 38:2449. doi:10.1002/1099-0488(20000915)38:18<2449::AID-POLB120>3.0.CO;2-E

    Article  Google Scholar 

  7. Bobobza L (2000) Polym Int 49:743. doi:10.1002/1097-0126(200007)49:7<743::AID-PI448>3.0.CO;2-O

    Article  Google Scholar 

  8. George SC, Knörgen M, Thomas S (1999) J Membr Sci 163:1. doi:10.1016/S0376-7388(99)00098-8

    Article  CAS  Google Scholar 

  9. Sombatsompop N (1998) Polym Plast Technol Eng 37(3):333. doi:10.1080/03602559808006932

    Article  CAS  Google Scholar 

  10. Saville B, Watson AA (1967) Rubber Chem Technol 40:100

    CAS  Google Scholar 

  11. Morrison NJ Porter M (1989) In: Allen G, Bevington JC (eds) Comprensive Polymer Science: The Synthesis, Characterization, Reactions & Applications of Polymers. Pergamon Press, New York

    Google Scholar 

  12. Choi W (2006) e-J Soft Mat 2:47

    Article  Google Scholar 

  13. Nieuwenhuizen PJ (2001) App Cat A. Gen 207:55

    Article  CAS  Google Scholar 

  14. Cunneen JI, Russell RM (1970) Rubber Chem Technol 43(5):1215

    Google Scholar 

  15. Flory PJ (1992) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  16. Marzocca AJ (2007) Eur Polym J 43:2682. doi:10.1016/j.eurpolymj.2007.02.034

    Article  CAS  Google Scholar 

  17. Van Krevelen DW (1990) Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction fromadditive group contributions. Elsevier Science, Amsterdam

    Google Scholar 

  18. Hagen R, Salmén L, Stenberg B (1996) J Polym Sci Part B. Polym Phys 38:1997. doi:10.1002/(SICI)1099-0488(19960915) 34:12<1997::AID-POLB5>3.0.CO;2-N

    Article  Google Scholar 

  19. Mohammady SZ, Mansour AA, Soden WS (2001) Macromol Chem Phys 202:2732. doi:10.1002/1521-3935(20010901) 202:13<2732::AID-MACP2732>3.0.CO;2-C

    Article  CAS  Google Scholar 

  20. Sobhy MS (1997) Polym Int 42:85. doi:10.1002/(SICI)1097-0126(199701)42:1<85::AID-PI657>3.0.CO;2-N

    Article  CAS  Google Scholar 

  21. Ferry JD (1980) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  22. Ogura K, Takahashi M (2003) J Soc Rheol Jpn 31(2):79. doi:10.1678/rheology.31.79

    Article  CAS  Google Scholar 

  23. Stratchota A, Kroutilová I, Kovářová J, Matějka L (2004) Macromolecules 37:9457. doi:10.1021/ma048448y

    Article  Google Scholar 

  24. Coltrain BK, Landry CJT, O’Reilly JM, Chamberlain AM, Rakes GA, Sedita JS, Kelts LW, Landry MR, Long VK (1993) Chem Mat 5:1455

    Google Scholar 

  25. Wang Y, Wang Y, Tian M, Zhang L, Ma J (2008) J Appl Polym Sci 107:444. doi:10.1002/app.27086

    Article  CAS  Google Scholar 

  26. Keller FR, Koch T, Peterlik H, Seidler S, Schubert U (2007) J Polymer Science Part B Polym Phys 45:2215. doi:10.1002/polb.21224

    Article  Google Scholar 

  27. Ikeda Y (2003) J Appl Polym Sci 87:61. doi:10.1002/app.11670

    Article  CAS  Google Scholar 

  28. Chiou B-S, Schoen PE (2002) J Appl Polym Sci 83:212. doi:10.1002/app.10056

    Article  CAS  Google Scholar 

  29. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, Nueva York

    Google Scholar 

  30. Halasa AF, Prentis J, Hsu B, Jasiunas C (2005) Polymer (Guildf) 46:4166. doi:10.1016/j.polymer.2005.02.063

    Article  CAS  Google Scholar 

  31. Macaione DP Sacher RE Singler RE (1998) In: Earnest CM (ed) Compositional Analysis by Thermo-gravimetry. ASTM STP 997, Philadelphia

  32. Coran Y (2003) J Appl Polym Chem 87:24. doi:10.1002/app.11659

    Article  CAS  Google Scholar 

  33. Posadas P, Fernández A, Brasero J, Valentín JL, Marcos A, Rodríguez A, González L (2007) J Appl Polym Sci 106:3481. doi:10.1002/app.27026

    Article  CAS  Google Scholar 

  34. Heideman G, Datta RN, Noordermeer JWM, van Baarle B (2005) J Appl Polym Sci 95:1388. doi:10.1002/app.21364

    Article  CAS  Google Scholar 

  35. Jackson KDO, Loadman MJR, Jones CH, Ellis G (1990) Spectrochim Acta [A] 46(2):217. doi:10.1016/0584-8539(90)80091-C

    Google Scholar 

  36. Ward NJ, Edwards HGM, Johnson AF (2005) J Raman Spectrosc 36:192. doi:10.1002/jrs.1274

    Article  CAS  Google Scholar 

  37. Cornell SW, Koening JL (1969) Macromolecules 2(5):540. doi:10.1021/ma60011a018

    Article  CAS  Google Scholar 

  38. Edwards HGM, Farwell JDW, Johnson AF, Lewis IR, Ward NJ, Webb N (1992) Macromolecules 25:525. doi:10.1021/ma00028a005

    Article  CAS  Google Scholar 

  39. Shimba A, Morimoto M, Sato E, Kimura F, Onda N (2001) Anal Sci 17(Suppl):i1503–i1505

    Google Scholar 

  40. Quirk RP, Gomochak Pickel DL (2005) In: Mark JE, Erman B, Eirich FR (eds) The Science and Technology of Rubber. Elsevier, San Diego, London

    Google Scholar 

  41. Choi S-S, Cho G (2006) J Appl Polym Sci 102:4707. doi:10.1002/app.24778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance to carry out this research work has been provided by the Xunta de Galicia (Axudas do Programa de Consolidación Expte. 2007/0008_0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Diez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diez, J., Bellas, R., López, J. et al. Study of the crosslink density, dynamo-mechanical behaviour and microstructure of hot and cold SBR vulcanizates. J Polym Res 17, 99–107 (2010). https://doi.org/10.1007/s10965-009-9295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9295-6

Keywords

Navigation