Skip to main content
Log in

Calorimetric and dielectric study on poly(trimethylene terephthalate)/polycarbonate blends

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(trimethylene terephthalate) (PTT)/polycarbonate (PC) blends with different compositions were prepared by melt blending. The miscibility and phase behavior of melt-quenched and cold-crystallized blends were studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy. The blends of all compositions display only one glass transition (T g ) in both states. The melting temperature and the crystallinity of PTT in the blend decrease with increasing PC content. The dielectric results for the melt-quenched blends, for PC content up to 60 wt.%, exhibited two merged relaxation peaks during the heating scan; the lower temperature relaxation peak represent the normal glass-transition (α) relaxation of the mixed amorphous phase and the higher temperature relaxation due to the new-constrained mixed amorphous phase after crystallization. Cold-crystallized blends displayed only one glass transition α-relaxation whose temperatures varied with composition in manner similar to that observed by DSC. The dielectric α-relaxation of cold crystallized blends has been analyzed. Parameters relating to relaxation broadening, dielectric relaxation strength, and activation energy were quantified and were found to be composition dependent. The PTT/PC blends could be considered as two-phase system, a crystalline PTT phase and a mixed amorphous phase consisting of a miscible mixture of the two polymers. However, the crystallinity was only detected for blends containing greater than 40 wt.% PTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Utracki LA (1989) Commercial polymer blends. Chapman & Hall, New York

    Google Scholar 

  2. Folks M, Hope P (eds) (1993) Polymer blends and alloys. Blackie, London

  3. Proter RS, Wang LA (1992) Polymer 33:2019–2030

    Article  Google Scholar 

  4. Fakirov S, Sarkissova M, Denchev Z (1996) Macromol Chem Phys 197:2837–2867

    Article  CAS  Google Scholar 

  5. Wilkinson AN, Tattum SB, Ryan AJ (1997) Polymer 38:1923–1928

    Article  Google Scholar 

  6. Hopfe I, Pompe G, Eichhorn KJ (1997) Polymer 38:2321–2327

    Article  CAS  Google Scholar 

  7. Pome G, HauBler L (1997) J Polym Sci Polym Phys 35

  8. Tattum SB, Cole D, Wilkinson AN (2000) J Macromol Sci Phys 39:459–479

    Article  Google Scholar 

  9. Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F, Berti C, Fiorini M (1997) Polymer 38:195–200

    Article  CAS  Google Scholar 

  10. Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F, Berti C, Fiorini M (1997) Polymer 38:201–205

    Article  CAS  Google Scholar 

  11. Fiorini M, Pilati F, Berti C, Toselli M, Ignatov V (1997) Polymer 38:413–419

    Article  CAS  Google Scholar 

  12. Marchese P, Celli A, Fiorini M (2002) Macromol Chem Phys 203:695–704

    Article  CAS  Google Scholar 

  13. Kimura M, Proter RS, Salee G (1983) J Polym Sci Polym Phys Ed 21:367–378

    Article  CAS  Google Scholar 

  14. Fernandez-Berridi MJ, Iruin JJ, Maiza I (1995) Polymer 36:1357–1361

    Article  CAS  Google Scholar 

  15. Grebowicz J, Chauh HH (1996) Progress report. Shell Chemical

  16. Zhang Z (2004) J Appl Polym Sci 91:1657

    Article  CAS  Google Scholar 

  17. Hung J-M, Ju M-Y, Chu PP, Chang F-C (1999) J Polym Res 6:259

    Article  Google Scholar 

  18. Chuah HH (2001) Polym Eng Sci 41:308

    Article  CAS  Google Scholar 

  19. Chuah HH (2003) In: Scheirs J, Long TF (eds) Modern polyesters. Wiley, Chichester, pp 361–397

    Google Scholar 

  20. El Shafee E (2003) Polymer 44:3727–3732

    Article  CAS  Google Scholar 

  21. Kim YH, Choi JM, Cho JW, Lee HS (2001) Polym Mater Sci Eng 85:373–374

    CAS  Google Scholar 

  22. Liau WB, Liu AS, Chiu WY (1999) J Polym Res 6:27

    Article  CAS  Google Scholar 

  23. Chiu FG, Huang KH, Yang JC (2003) J Polym Sci Phys Ed 41:2264–2265

    Article  CAS  Google Scholar 

  24. Ramiro J, Eguiazabal JI, Nazabal J (2003) Polym Adv Techon 14:129–136

    Article  CAS  Google Scholar 

  25. Supaphol P, Dangseeyun N, Thanomkiat P, Mithitanakul M (2004) J Polym Sci Phys Ed 42:676–686

    Article  CAS  Google Scholar 

  26. Castellano M, Turturro A, Valenti B, Avagliano A, Costa GZ (2006) Mocromol Chem Phys 207:242–251

    Article  CAS  Google Scholar 

  27. Huang DH, Woo EM, Lee L (2006) Colloid Polym Sci 284(8):843–852

    Article  CAS  Google Scholar 

  28. Gonzalez I, Eguiazabal I, Nazabal J (2006) J Appl Polym Sci 102:3246–3254

    Article  CAS  Google Scholar 

  29. Bae WJ, Jo WH (2002) Macromol Res 10(3):145–149

    CAS  Google Scholar 

  30. Xue ML, Sheng J, Chuah HH, Zhang XY (2004) J Macromol Sci Phys 43(B):1045–1061

    Google Scholar 

  31. Lee LT, Woo EM (2004) Colloid Polym Sci 282:1308–1315

    Article  CAS  Google Scholar 

  32. Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Bohme F, Hassler R (2005) Eur Polym J 41:2880–2886

    Article  CAS  Google Scholar 

  33. Guo MM, Brittain W (1998) Macromolecules 31:7166

    Article  CAS  Google Scholar 

  34. Gordon M, Taylor JS (1952) J Appl Chem 2:495

    Google Scholar 

  35. Prud’homme RE (1982) Polym Eng Sci 22:90

    Article  Google Scholar 

  36. Noshi T, Wang TT (1978) Macromolecules 8:909

    Article  Google Scholar 

  37. Pyda M, Wunderlich B (2000) J Polym Sci Phys Ed 38:622

    Article  CAS  Google Scholar 

  38. Ong CJ, Price FP (1978) J Polym Sci Polym Symp 63:45

    Article  CAS  Google Scholar 

  39. Rim P, Runt JP (1983) Macromolecules 16:762

    Article  CAS  Google Scholar 

  40. Paul DR, Barlow JW, Berstein RE, Wahrmund DC (1978) Polym Eng Sci 18:1225

    Article  CAS  Google Scholar 

  41. Coburn JC, Boyd RH (1986) Macromolecules 19:2238

    Article  CAS  Google Scholar 

  42. El Shafee E (2001) Polymer 42:8779

    Article  Google Scholar 

  43. El Shafee E (2001) Eur Polym 37:1677

    Article  CAS  Google Scholar 

  44. Cheng SZD, Cao M-Y, Wunderlich B (1968) Macromolecules 19:1868

    Article  Google Scholar 

  45. Kalakhummath S, Kalika D (2006) Polymer 47:7085–7094

    Article  CAS  Google Scholar 

  46. Ishida Y, Matsouka S (1965) ASC Polym Prepr 6:795

    CAS  Google Scholar 

  47. Rellick GS, Runt J (1986) J Polym Sci Phys Ed 24:313

    Article  CAS  Google Scholar 

  48. El Shafee E (2001) Eur Polym 37:451

    Article  CAS  Google Scholar 

  49. El Shafee E (2002) Eur Polym 38:413

    Article  CAS  Google Scholar 

  50. Schonhals A, Kremer F. In: Kremer F, Shonhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin Heidelberg New York, pp 59–98

    Google Scholar 

  51. Runt JP, Zhang X, Miley DM, Gallagher KP, Zhang A (1992) Macromolecules 25:3902

    Article  CAS  Google Scholar 

  52. Talibuddin S, Wu L, Runt J, Lin JS (1996) Macromolecules 29:7527

    Article  CAS  Google Scholar 

  53. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  54. Angell CA (1997) Polymer 38:6261

    Article  CAS  Google Scholar 

  55. Hodge IM (1997) J Res Natl Inst Stand Technol 102:195–205

    CAS  Google Scholar 

  56. Zhong ZZ, Schuele DE, Smith SW, Gordon Wl (1993) Macromolecules 26:6403

    Article  CAS  Google Scholar 

  57. Cole RH, Cole KS (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  58. Colmenero J, Alegria A, Ngai KL, Roland CM (1992) Polym Prep 26:3075–3080

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. El Shafee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Shafee, E., Saad, G.R. & Zaki, M. Calorimetric and dielectric study on poly(trimethylene terephthalate)/polycarbonate blends. J Polym Res 15, 47–58 (2008). https://doi.org/10.1007/s10965-007-9143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9143-5

Keywords

Navigation